517 research outputs found
On the analogy between the classical wave optics and the quantum wave phenomena
A striking correspondence between the effects of an auxiliary-mode-assisted
transfer of light power between two waveguides and an auxiliary-state-assisted
transfer of an electron between two quantum dots is highlighted by the example
of an exactly solvable model.Comment: To appear in Solid State Communication
Cooperation and Self-Regulation in a Model of Agents Playing Different Games
A simple model for cooperation between "selfish" agents, which play an
extended version of the Prisoner's Dilemma(PD) game, in which they use
arbitrary payoffs, is presented and studied. A continuous variable,
representing the probability of cooperation, [0,1], is assigned to
each agent at time . At each time step a pair of agents, chosen at
random, interact by playing the game. The players update their using a
criteria based on the comparison of their utilities with the simplest estimate
for expected income. The agents have no memory and use strategies not based on
direct reciprocity nor 'tags'. Depending on the payoff matrix, the systems
self-organizes - after a transient - into stationary states characterized by
their average probability of cooperation and average equilibrium
per-capita-income . It turns out that the model
exhibit some results that contradict the intuition. In particular, some games
which - {\it a priory}- seems to favor defection most, may produce a relatively
high degree of cooperation. Conversely, other games, which one would bet that
lead to maximum cooperation, indeed are not the optimal for producing
cooperation.Comment: 11 pages, 3 figures, keybords: Complex adaptive systems, Agent-based
models, Social system
Modulational instability in nonlocal nonlinear Kerr media
We study modulational instability (MI) of plane waves in nonlocal nonlinear
Kerr media. For a focusing nonlinearity we show that, although the nonlocality
tends to suppress MI, it can never remove it completely, irrespectively of the
particular profile of the nonlocal response function. For a defocusing
nonlinearity the stability properties depend sensitively on the response
function profile: for a smooth profile (e.g., a Gaussian) plane waves are
always stable, but MI may occur for a rectangular response. We also find that
the reduced model for a weak nonlocality predicts MI in defocusing media for
arbitrary response profiles, as long as the intensity exceeds a certain
critical value. However, it appears that this regime of MI is beyond the
validity of the reduced model, if it is to represent the weakly nonlocal limit
of a general nonlocal nonlinearity, as in optics and the theory of
Bose-Einstein condensates.Comment: 8 pages, submitted to Phys. Rev.
The Recursive Record Semantics of Objects Revisited
In a call-by-value language, representing objects as recursive records requires using an unsafe fixpoint. We design, for a core language including extensible records, a type system which rules out unsafe recursion and still supports the reconstruction of a principal type. We illustrate the expressive power of this language with respect to object-oriented programming by introducing a sub-language for «mixin-based» programming
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Clinical Utility and User Perceptions of a Digital System for Electronic Patient-Reported Symptom Monitoring during Routine Cancer Care: Findings from the PRO-TECT Trial
PURPOSE There is increasing interest in implementing digital systems for remote monitoring of patients’ symptoms during routine oncology practice. Information is limited about the clinical utility and user perceptions of these systems. METHODS PRO-TECT is a multicenter trial evaluating implementation of electronic patient-reported outcomes (ePROs) among adults with advanced and metastatic cancers receiving treatment at US community oncology practices (ClinicalTrials.gov identifier: NCT03249090). Questions derived from the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) are administered weekly by web or automated telephone system, with alerts to nurses for severe or worsening symptoms. To elicit user feedback, surveys were administered to participating patients and clinicians. RESULTS Among 496 patients across 26 practices, the majority found the system and questions easy to understand (95%), easy to use (93%), and relevant to their care (91%). Most patients reported that PRO information was used by their clinicians for care (70%), improved discussions with clinicians (73%), made them feel more in control of their own care (77%), and would recommend the system to other patients (89%). Scores for most patient feedback questions were significantly positively correlated with weekly PRO completion rates in both univariate and multivariable analyses. Among 57 nurses, most reported that PRO information was helpful for clinical documentation (79%), increased efficiency of patient discussions (84%), and was useful for patient care (75%). Among 39 oncologists, most found PRO information useful (91%), with 65% using PROs to guide patient discussions sometimes or often and 65% using PROs to make treatment decisions sometimes or often. CONCLUSION These findings support the clinical utility and value of implementing digital systems for monitoring PROs, including the PRO-CTCAE, in routine cancer care
Stimulation of oncogene-specific tumor-infiltrating T cells through combined vaccine and aPD-1 enable sustained antitumor responses against established HER2 breast cancer
Purpose: Despite promising advances in breast cancer immunotherapy, augmenting T-cell infiltration has remained a significant challenge. Although neither individual vaccines nor immune checkpoint blockade (ICB) have had broad success as monotherapies, we hypothesized that targeted vaccination against an oncogenic driver in combination with ICB could direct and enable antitumor immunity in advanced cancers. Experimental Design: Our models of HER2þ breast cancer exhibit molecular signatures that are reflective of advanced human HER2þ breast cancer, with a small numbers of neoepitopes and elevated immunosuppressive markers. Using these, we vaccinated against the oncogenic HER2D16 isoform, a nondriver tumor-associated gene (GFP), and specific neoepitopes. We further tested the effect of vaccination or anti-PD-1, alone and in combination. Results: We found that only vaccination targeting HER2D16, a driver of oncogenicity and HER2-therapeutic resistance, could elicit significant antitumor responses, while vaccines targeting a nondriver tumor-specific antigen or tumor neoepitopes did not. Vaccine-induced HER2-specific CD8þ T cells were essential for responses, which were more effective early in tumor development. Long-term tumor control of advanced cancers occurred only when HER2D16 vaccination was combined with aPD-1. Single-cell RNA sequencing of tumor-infiltrating T cells revealed that while vaccination expanded CD8 T cells, only the combination of vaccine with aPD-1 induced functional gene expression signatures in those CD8 T cells. Furthermore, we show that expanded clones are HER2-reactive, conclusively demonstrating the efficacy of this vaccination strategy in targeting HER2. Conclusions: Combining oncogenic driver targeted vaccines with selective ICB offers a rational paradigm for precision immunotherapy, which we are clinically evaluating in a phase II trial (NCT03632941)
A comparative study of two separate analytical techniques for the simultaneous determination of diclofenac sodium and diacerein from combined dosage form
ABSTRACT Diclofenac sodium (DS) and diacerein (DC) have emerged as a potential combination therapy for the treatment of knee osteoarthritis. Therefore a validated analytical method is essential for the simultaneous estimation of both from combined dosage form. A ratio derivative spectrophotometric and a chromatographic technique have been developed for the simultaneous determination of DS and DC. The quantification was done at 263.00 nm for DC and 304.50 nm for DS in the first method, whereas 257 nm for DC and at 274 nm for DS for LC-DAD analysis in chromatographic method using acetate buffer and methanol as the mobile phase at a flow-rate 0.50 mL/min. Both of these methods are found to be linear in the concentration range under study with r2 value 0.999 and 0.996 for DS and DC respectively in ratio derivative spectroscopy and 0.998 and 0.999 for DS and DC respectively in LC-DAD study. Both of these methods are found to be accurate and precise, though greater robustness and precision is observed with chromatographic analysis over the ratio derivative spectroscopy. Statistically there was no significant difference between proposed ratio derivative spectrophotometric and LC-DAD methods
- …