54 research outputs found

    Exercise training with dietary counselling increases mitochondrial chaperone expression in middle-aged subjects with impaired glucose tolerance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance and diabetes are associated with increased oxidative stress and impairment of cellular defence systems. Our purpose was to investigate the interaction between glucose metabolism, antioxidative capacity and heat shock protein (HSP) defence in different skeletal muscle phenotypes among middle-aged obese subjects during a long-term exercise and dietary intervention. As a sub-study of the Finnish Diabetes Prevention Study (DPS), 22 persons with impaired glucose tolerance (IGT) taking part in the intervention volunteered to give samples from the <it>vastus lateralis </it>muscle. Subjects were divided into two sub-groups (IGTslow and IGTfast) on the basis of their baseline myosin heavy chain profile. Glucose metabolism, oxidative stress and HSP expressions were measured before and after the 2-year intervention.</p> <p>Results</p> <p>Exercise training, combined with dietary counselling, increased the expression of mitochondrial chaperones HSP60 and glucose-regulated protein 75 (GRP75) in the <it>vastus lateralis </it>muscle in the IGTslow group and that of HSP60 in the IGTfast group. In cytoplasmic chaperones HSP72 or HSP90 no changes took place. In the IGTslow group, a significant positive correlation between the increased muscle content of HSP60 and the oxygen radical absorbing capacity values and, in the IGTfast group, between the improved VO<sub>2max </sub>value and the increased protein expression of GRP75 were found. Serum uric acid concentrations decreased in both sub-groups and serum protein carbonyl concentrations decreased in the IGTfast group.</p> <p>Conclusion</p> <p>The 2-year intervention up-regulated mitochondrial HSP expressions in middle-aged subjects with impaired glucose tolerance. These improvements, however, were not correlated directly with enhanced glucose tolerance.</p

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    Understanding the complexity of glycaemic health: systematic bio-psychosocial modelling of fasting glucose in middle-age adults; a DynaHEALTH study

    Get PDF
    © The Author(s) 2018. Background: The prevention of the risk of type 2 diabetes (T2D) is complicated by multidimensional interplays between biological and psychosocial factors acting at the individual level. To address the challenge we took a systematic approach, to explore the bio-psychosocial predictors of blood glucose in mid-age. Methods: Based on the 31-year and 46-year follow-ups (5,078 participants, 43% male) of Northern Finland Birth Cohort 1966, we used a systematic strategy to select bio-psychosocial variables at 31 years to enable a data-driven approach. As selection criteria, the variable must be (i) a component of the metabolic syndrome or an indicator of psychosocial health using WHO guidelines, (ii) easily obtainable in general health check-ups and (iii) associated with fasting blood glucose at 46 years (P < 0.10). Exploratory and confirmatory factor analysis were used to derive latent factors, and stepwise linear regression allowed exploration of relationships between factors and fasting glucose. Results: Of all 26 variables originally considered, 19 met the selection criteria and were included in an exploratory factor analysis. Two variables were further excluded due to low loading (<0.3). We derived four latent factors, which we named as socioeconomic, metabolic, psychosocial and blood pressure status. The combination of metabolic and psychosocial factors, adjusted for sex, provided best prediction of fasting glucose at 46 years (explaining 10.7% of variation in glucose; P < 0.001). Regarding different bio-psychosocial pathways and relationships, the importance of psychosocial factors in addition to established metabolic risk factors was highlighted. Conclusions: The present study supports evidence for the bio-psychosocial nature of adult glycemic health and exemplifies an evidence-based approach to model the bio-psychosocial relationships. The factorial model may help further research and public health practice in focusing also on psychosocial aspects in maintaining normoglycaemia in the prevention of cardio-metabolic diseases.European Union’s Horizon 2020 research and innovation programme, grant agreement No 633595

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    Get PDF
    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.Peer reviewe

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe

    Association between periodontal condition and the development of type 2 diabetes mellitus:results from a 15-year follow-up study

    No full text
    Abstract Aim: To study whether periodontal condition is associated with the development of type 2 diabetes mellitus (T2DM). Materials and Methods: A population‐based follow‐up study was conducted among persons born in 1935 and living in the city of Oulu, Finland (n = 395). The baseline examinations were done during 1990–1992, and the follow‐up examinations were done during 2007–2008. The data were gathered by questionnaires, laboratory tests and clinical measurements. Poisson regression models were used in the data analyses. Results: The adjusted rate ratios (RR) with 95% confidence intervals (95% CI) for the incident T2DM among subjects with 4–5 mm deep periodontal pockets (n = 98), among subjects with 6 mm deep or deeper periodontal pockets (n = 91), and among edentulous subjects (n = 118) were 1.32 (95% CI: 0.69–2.53), 1.56 (95% CI: 0.84–2.92) and 1.00 (95% CI: 0.53–1.89), respectively, compared to dentate subjects without deepened (4 mm deep or deeper) periodontal pockets (n = 88). The adjusted RR per site (the number of sites with deepened periodontal pockets as a continuous variable) was 1.02 (95% CI: 1.00–1.04). Conclusions: Poor periodontal condition may be a predictor of the development of T2DM. However, the causality between periodontal condition and the development of T2DM remains uncertain
    corecore