76 research outputs found

    Kinetics of dried blood spot-measured anti-SARS-CoV2 Spike IgG in mRNA-vaccinated healthcare workers

    Get PDF
    Introduction: One of the major criticisms facing the research community during SARS-CoV2 pandemic was the lack of large-scale, longitudinal data on the efficacy of the SARS-CoV2 mRNA vaccines. Currently, even if COVID-19 antiviral treatments have been authorized by European Medicine Agency, prevention through approved specific vaccines is the best approach available in order to contain the ongoing pandemic. Objectives: Here, we studied the antibody kinetic over a one-year period from vaccination with the Pfizer-BioNTech (Pfizer) vaccines and subsequent boosting with either the BioNTech or Moderna (Spikevax) vaccines in a large cohort of 8,071 healthcare workers (HCW). We also described the impact of SARS-CoV2 infection on antibody kinetic over the same period. Methods: We assessed the anti SARS-CoV2 Spike IgG antibody kinetic by the high throughput dried blood spot (DBS) collection method and the GSP®/DELFIA® Anti-SARS-CoV2 IgG assay (PerkinElmer®). Results: Our data support existing models showing that SARS-CoV2 vaccination elicits strong initial antibodies responses that decline with time but are transitorily increased by administering a vaccine booster. We also showed that using heterologous vaccine/booster combinations a stronger antibody response was elicited than utilizing a booster from the same vaccine manufacturer. Furthermore, by considering the impact of SARS-CoV2 infection occurrence in proximity to the scheduled booster administration, we confirmed that booster dose did not contribute significantly to elicit higher antibody responses. Conclusion: DBS sampling in our large population of HCWs was fundamental to collect a large number of specimens and to clarify the effective mRNA vaccine-induced antibody kinetic and the role of both heterologous boosters and SARS-CoV2 infection in modulating antibody responses

    Multicenter Evaluation of the C6 Lyme ELISA Kit for the Diagnosis of Lyme Disease

    Get PDF
    Lyme disease (LD), caused by infection with Borrelia burgdorferi, is the most common tick-borne infection in many regions of Eurasia. Antibody detection is the most frequently used laboratory test, favoring a two-step serodiagnostic algorithm; immunoenzymatic detection of antibodies to C6 has been shown to perform similarly to a standard two-step workflow. The aim of this study was the performance evaluation of the C6 Lyme ELISA kit compared to a standard two-step algorithm in three laboratories located in the northeastern region of Italy which cater to areas with different LD epidemiology. A total of 804 samples were tested, of which 695 gave concordant results between C6 testing and routine workflow (564 negative, 131 positive). Wherever available, clinical presentation and additional laboratory tests were analyzed to solve discrepancies. The C6 based method showed a good concordance with the standard two-step algorithm (Cohen's κ = 0.619), however, the distribution of discrepancies seems to point towards a slightly lower specificity of C6 testing, which is supported by literature and could impact on patient management. The C6 ELISA, therefore, is not an ideal stand-alone test; however, if integrated into a two-step algorithm, it might play a part in achieving a sensitive, specific laboratory diagnosis of LD

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Efficacy of SARS-CoV-2 Vaccination in Dialysis Patients: Epidemiological Analysis and Evaluation of the Clinical Progress

    Get PDF
    This study investigated the impact of the fourth COVID-19 pandemic wave on dialysis patients of Romagna territory, assessing the associations of vaccination status with infection risk, clinical severity and mortality. From November 2021 to February 2022, an epidemiological search was conducted on 829 patients under dialysis treatment for at least one month. The data were then analyzed with reference to the general population of the same area. A temporal comparison was also carried out with the previous pandemic waves (from March 2020 to October 2021). The epidemiological evolution over time in the dialysis population and in Romagna citizens replicated the global trend, as the peak of the fourth wave corresponded to the time of maximum diffusion of omicron variant (B.1.1.529). Of 771 prevalent dialysis patients at the beginning of the study, 109 (14.1%) contracted SARS-CoV-2 infection during the 4-month observation period. Vaccine adherence in the dialysis population of the reference area was above 95%. Compared to fully or partially vaccinated subjects, the unvaccinated ones showed a significantly higher proportion of infections (12.5% vs. 27.0% p = 0.0341), a more frequent need for hospitalization (22.2% vs. 50.0%) and a 3.3-fold increased mortality risk. These findings confirm the effectiveness of COVID-19 vaccines in keeping infectious risk under control and ameliorating clinical outcomes in immunocompromised patients

    Viral Population Heterogeneity and Fluctuating Mutational Pattern during a Persistent SARS‐CoV‐2 Infection in an Immunocompromised Patient

    Get PDF
    Literature offers plenty of cases of immunocompromised patients, who develop chronic and severe SARS‐CoV‐2 infections. The aim of this study is to provide further insight into SARS-CoV‐2 evolutionary dynamic taking into exam a subject suffering from follicular lymphoma, who developed a persistent infection for over 7 months. Eight nasopharyngeal swabs were obtained, and were analyses by qRT‐PCR for diagnostic purposes. All of them were considered eligible (Ct < 30) for NGS sequencing. Sequence analysis showed that all sequences matched the B.1.617.2 AY.122 lineage, but they differed by few mutations identifying three genetically similar subpopulations, which evolved during the course of infection, demonstrating that prolonged replication is paralleled with intra‐host virus evolution. These evidences support the hypothesis that SARS‐CoV‐2 adaptive capacities are able to shape a heterogeneous viral population in the context of immunocompromised patients. Spill‐over of viral variants with enhanced transmissibility or immune escape capacities from these subjects is plausible

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels

    Get PDF
    IntroductionT cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection.MethodsHere, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides. Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared “public” T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells.ResultsCollectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3–7 = 85.1% [95% CI = 79.9–89.7]; Day 8–14 = 94.8% [90.7–98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1–98.3]).DiscussionThe approaches described in this work provide detailed insights into the adaptive immune response to SARS-CoV-2 infection, and they have potential applications in clinical diagnostics, vaccine development, and monitoring

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb1^{-1} of collisions at a centre-of-mass energy of s\sqrt{s} = 8 TeV, although in some case an additional 4.7 fb1^{-1} of collision data at s\sqrt{s} = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore