27 research outputs found
Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts
[EN] In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare.
Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated.
The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments.
The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.This research has been supported by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE) (grant nos. 2814ERA02C and 2814ERA03C), the Instituto Nacional de Investigacion Tecnologia Agraria y Alimentaria (INIA) (grant no. 618105), the Basque Government (grant no. BERC 2018-2021), the Spanish Ministry of Economy, Industry and Competitiveness MINECO (grant nos. MDM-2017-0714, FJCI-2016-30263, and RYC-2017-22143), and the Innovation Foundation Denmark (grant no. 4215-00004B).Hempel, S.; Menz, C.; Pinto, S.; Galán, E.; Janke, D.; Estellés, F.; Müschner-Siemens, T.... (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios - uncertainties and potential impacts. Earth System Dynamics. 10(4):859-884. https://doi.org/10.5194/esd-10-859-2019S859884104Acatincăi, S., Gavojdian, D., Stanciu, G., Cziszter, L. T., Tripon, I., and Baul, S.: Study Regarding Rumination Behavior in Cattle–Position Adopted by Cows During Rumination Process, Scientific Papers Animal Science and Biotechnologies, 43, 199–202, 2010. aAllen, J., Anderson, S., Collier, R., and Smith, J.: Managing heat stress and its impact on cow behavior, in: 28th Annual Southwest Nutrition and Management Conference, 6–8 March 2013, Reno, Nevada, USA, 2013. aAllen, J., Hall, L., Collier, R., and Smith, J.: Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress, J. Dairy Sci., 98, 118–127, 2015. a, bAmon, B., Kryvoruchko, V., Fröhlich, M., Amon, T., Pöllinger, A., Mösenbacher, I., and Hausleitner, A.: Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: Housing and manure storage, Livest. Sci., 112, 199–207, 2007. aAnderson, S., Bradford, B., Harner, J., Tucker, C., Choi, C., Allen, J., Hall, L., Rungruang, S., Collier, R., and Smith, J.: Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate, J. Dairy Sci., 96, 4738–4750, 2013. a, bAngrecka, S. and Herbut, P.: Conditions for cold stress development in dairy cattle kept in free stall barn during severe frosts, Czech J. Anim. Sci., 60, 81–87, https://doi.org/10.17221/7978-CJAS, 2015. aBailey, K., Jones, C., and Heinrichs, A.: Economic returns to Holstein and Jersey herds under multiple component pricing, J. Dairy Sci., 88, 2269–2280, 2005. aBerman, A.: Estimates of heat stress relief needs for Holstein dairy cows 1, J. Anim. Sci., 83, 1377–1384, 2005. aBerman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., and Graber, Y.: Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate, J. Dairy Sci., 68, 1488–1495, 1985. aBernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., and Nardone, A.: The effects of heat stress in Italian Holstein dairy cattle, J. Dairy Sci., 97, 471–486, 2014. a, bBianca, W.: Relative importance of dry- and wet-bulb temperatures in causing heat stress in cattle, Nature, 195, 251–252, 1962. aBohmanova, J., Misztal, I., and Cole, J.: Temperature-humidity indices as indicators of milk production losses due to heat stress, J. Dairy Sci., 90, 1947–1956, 2007. a, b, c, dBouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., and Belyea, R.: The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate, Anim. Res., 51, 479–491, 2002. a, bBroucek, J.: Production of methane emissions from ruminant husbandry: a review, J. Environ. Prot., 5, 1482–1493, https://doi.org/10.4236/jep.2014.515141, 2014. aBrouček, J., Letkovičová, M., and Kovalčuj, K.: Estimation of cold stress effect on dairy cows, Int. J. Biometeorol., 35, 29–32, 1991. aBroucek, J., Ryba, S., Mihina, S., Uhrincat, M., and Kisac, P.: Impact of thermal-humidity index on milk yield under conditions of different dairy management, J. Anim. Feed Sci., 16, 329–344, https://doi.org/10.22358/jafs/66755/2007, 2007. a, bBrown-Brandl, T., Eigenberg, R., Nienaber, J., and Hahn, G. L.: Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, Part 1: Analyses of indicators, Biosyst. Eng., 90, 451–462, 2005. aBrügemann, K., Gernand, E., König von Borstel, U., and König, S.: Defining and evaluating heat stress thresholds in different dairy cow production systems, Arch. Anim. Breed., 55, 13–24, 2012. aCannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. aCarabano, M.-J., Logar, B., Bormann, J., Minet, J., Vanrobays, M.-L., Diaz, C., Tychon, B., Gengler, N., and Hammami, H.: Modeling heat stress under different environmental conditions, J. Dairy Sci., 99, 3798–3814, 2016. a, b, cChristensen, J., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P.: Regional Climate Projections, in: IPCC Climate Change 2007: The Physical Science Basis, edited by: Solomon, S., Qin, D., Manning, M., Hen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007. aCollier, R. J., Hall, L. W., Rungruang, S., and Zimbleman, R. B.: Quantifying heat stress and its impact on metabolism and performance, Proc. Florida Ruminant Nutrition Symp, Department of Animal Sciences, University of Arizona, Gainesville, USA, p. 68, 2012. a, b, cCook, N., Mentink, R., Bennett, T., and Burgi, K.: The effect of heat stress and lameness on time budgets of lactating dairy cows, J. Dairy Sci., 90, 1674–1682, 2007. a, bCurtis, A., Scharf, B., Eichen, P., and Spiers, D.: Relationships between ambient conditions, thermal status, and feed intake of cattle during summer heat stress with access to shade, J. Therm. Biol., 63, 104–111, 2017. ada Costa, A. N. L., Feitosa, J. V., Montezuma, P. A., de Souza, P. T., and de Araújo, A. A.: Rectal temperatures, respiratory rates, production, and reproduction performances of crossbred Girolando cows under heat stress in northeastern Brazil, Int. J. Biometeorol., 59, 1647–1653, 2015. a, bDa Silva, R. G., Maia, A. S. C., and de Macedo Costa, L. L.: Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments, Int. J. Biometeorol., 59, 551–559, 2015. aDavison, T., Jonsson, N., Mayer, D., Gaughan, J., Ehrlich, W., and McGowan, M.: Comparison of the impact of six heat-load management strategies on thermal responses and milk production of feed-pad and pasture fed dairy cows in a subtropical environment, Int. J. Biometeorol., 60, 1961–1968, 2016. aDel Prado A., Scholefield D., Chadwick D., Misselbrook T., Haygarth P., Hopkins A., Dewhurst R., Jones R., Moorby J., Davison P., Lord E., Turner M., Aikman P., and Schröder J.: A modelling framework to identify new integrated dairy production systems, in: 21st General Meeting of the European Grassland Federation (EGF), 3–6 April 2006, Badajoz, Spain, 766–768, 2006. aDe Rensis, F. and Scaramuzzi, R. J.: Heat stress and seasonal effects on reproduction in the dairy cow – a review, Theriogenology, 60, 1139–1151, 2003. aDe Rensis, F., Garcia-Ispierto, I., and López-Gatius, F.: Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows, Theriogenology, 84, 659–666, 2015. aDiepen, C. v., Wolf, J., Keulen, H. V., and Rappoldt, C.: WOFOST: a simulation model of crop production, Soil Use Manage., 5, 16–24, 1989. aDikmen, S. and Hansen, P.: Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment?, J. Dairy Sci., 92, 109–116, 2009. a, bDirksen, G., Gründer, H., Grunert, E., Krause, D., and Stöber, M.: Clinical examination of cattle, 3rd edn., Verlag Paul Parey, Berlin, Germany, 1990. aDosio, A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX regional climate models, J. Geophys. Res.-Atmos., 121, 5488–5511, 2016. aEfron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979. aEfron, B. and Tibshirani, R.: Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy, Stat. Sci., 1, 54–75, https://doi.org/10.1214/ss/1177013815, 1986. aEuropean Commission – EU FADN: EU Dairy Farms Report Based on 2016 FADN Data, avaialble at: https://ec.europa.eu/agriculture/fadn_en (last access: 11 April 2019), 2018. aFiedler, A., Fischer, J., Hempel, S., Saha, C., Loebsin, C., Berg, W., Amon, B., Brunsch, R., and Amon, T.: Flow fields within a dairy barn – Measurements, physical modelling and numerical simulation, in: Proceedings of the International Conference of Agricultural Engineering AgEng, 6–10 July 2014, Zürich, Switzerland, 1–5, 2014. a, bFood and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture – Assessing the information gap, available at: http://www.fao.org/3/a-i7279e.pdf (last access: 10 September 2018), 2017. aFord, B.: An Overview of Hot-Deck Procedures, in: Incomplete Data in Sample Surveys: Theory and Bibliographies, edited by: Madow, W., Olkin, I., and Rubin, D., Academic Press, New York, USA, 1983. aFournel, S., Ouellet, V., and Charbonneau, É.: Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review, Animals, 7, 37, https://doi.org/10.3390/ani7050037, 2017. aGalán, E., Llonch, P., Villagrá, A., Levit, H., Pinto, S., and del Prado, A.: A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle, PloS one, 13, e0206520, https://doi.org/10.1371/journal.pone.0206520, 2018. a, b, c, dGaughan, J., Mader, T. L., Holt, S., and Lisle, A.: A new heat load index for feedlot cattle, J. Anim. Sci., 86, 226–234, 2008. aGebremedhin, K. and Wu, B.: Simulation of flow field of a ventilated and occupied animal space with different inlet and outlet conditions, J. Therm. Biol., 30, 343–353, 2005. aGiorgi, F. and Gutowski Jr., W. J.: Regional dynamical downscaling and the CORDEX initiative, Annu. Rev. Env. Resour., 40, 467–490, 2015. aGroenestein, C., Hutchings, N., Haenel, H., Amon, B., Menzi, H., Mikkelsen, M., Misselbrook, T., van Bruggen, C., Kupper, T., and Webb, J.: Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe, J. Clean. Prod., 211, 1162–1170, 2019. aGurney, K.: An Introduction to Neural Networks, UCL Press Limited an imprint of Taylor & Francis group, London, UK, 1997. aHahn, G.: Dynamic responses of cattle to thermal heat loads, J. Anim. Sci., 77, 10–20, 1999. aHammami, H., Carabaño, M.-J., Logar, B., Vanrobays, M.-L., and Gengler, N.: Genotype x Climate interactions for protein yield using four European Holstein Populations, in: Proceedings of 10th World Congress of Genetics Applied to Livestock Production, 17–22 August 2014, Vancouver, Canada, 2014. aHeaton, J.: Artificial Intelligence for Humans, Volume 3: Deep Learning and Neural Networks, Artificial Intelligence for Humans Series, CreateSpace Independent Publishing Platform, Heaton Research, Inc., Chesterfield, USA, 2015. aHeinicke, J., Hoffmann, G., Ammon, C., Amon, B., and Amon, T.: Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows, J. Therm. Biol., 77, 67–74, 2018. a, b, c, dHeinicke, J., Ibscher, S., Belik, V., and Amon, T.: Cow individual activity response to the accumulation of heat load duration, J. Therm. Biol., 82, 23–32, https://doi.org/10.1016/j.jtherbio.2019.03.011, 2019. aHempel, S. and Menz, C.: Indoor climate projections for European cattle barns, Mendeley Data, v1, https://doi.org/10.17632/tjp8h523p7.1, 2019. aHempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. aHempel, S., Wiedemann, L amd Ammon, C., Fiedler, A., Saha, C.and Janke, D. L. C., Fischer, J., Amon, B., Hoffmann, G., Menz, C., Zhang, G., Halachmi, I., Del Prado, A., Estelles, F., Berg, W., Brunsch, R., and Amon, T.: Determine the flow characteristics of naturally ventilated dairy barns to optimize barn climate, in: 12. Tagung: Bau, Technik und Umwelt 2015 in der landwirtschaftlichen Nutztierhaltung, 8–10 September, 2015, KTBL, Darmstadt, Germany, 346–351, 2015a. aHempel, S., Wiedemann, L., Ammon, C., Fiedler, M., Saha, C., Loebsin, C., Fischer, J., Berg, W., Brunsch, R., and Amon, T.: Assessment of the through-flow patterns in naturally ventilated dairy barns – Three methods, one complex approach, in: RAMIRAN 2015 – Rural-Urban Symbiosis, edited by: Körner, I., TC-O_16, TUTech Verlag, Hamburg, Germany, Hamburg University of Technology, Germany, 356–359, e-book, 2015b. aHempel, S., Janke, D., König, M., Menz, C., Englisch, A., Pinto, S., Sibony, V., Halachmi, I., Rong, L., Zong, C., Zhang, G., Sanchis, E., Estelle, F., Calvet, S., Galan, E., del Prado, A., Ammon, C., Amon, B., and Amon, T.: Integrated modelling to assess optimisation potentials for cattle housing climate, Advances in Animal Biosciences, 7, 261–262, https://doi.org/10.1017/S2040470016000352, 2016a. a, bHempel, S., Saha, C. K., Fiedler, M., Berg, W., Hansen, C., Amon, B., and Amon, T.: Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn, Biosyst. Eng., 145, 10–21, 2016b. a, b, c, dHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on FACCE-JPI valorisation meeting, available at: https://www.faccejpi.com/content/download/5161/48933/version/1/file/FACCE-JPI_Synthesis-valorisation-survey-results-FINAL.pdf (last access: 11 April 2019), 2017a. aHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5163/48955/version/2/file/Projects+booklet_updated+08+May+2017.pdf (last access: 11 April 2019), 2017b. aHempel, S., Menz, C., Halachmi, I., Zhang, G., del Prado, A., Estelles, F., Amon, B., and Amon, T.: Report on ERANET+ mid-term meeting, available at: https://www.faccejpi.com/content/download/5295/50720/version/1/file/OptiBarn_presentation_ERA_NET+final+meeting+March18[1].pdf (last access: 11 April 2019), 2017c. aHempel, S., König, M., Menz, C., Janke, D., Amon, B., Banhazi, T. M., Estellés, F., and Amon, T.: Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability, Biosyst. Eng., 166, 58–75, 2018. a, b, c, dHerbut, P. and Angrecka, S.: Relationship between THI level and dairy cows’ behaviour during summer period, Ital. J. Anim. Sci., 17, 226–233, 2018. aHerbut, P., Angrecka, S., Nawalany, G., and Adamczyk, K.: Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period, Ann. Anim. Sci., 15, 517–526, 2015. aHoffmann, I.: Climate change and the characterization, breeding and conservation of animal genetic resources, Anim. Genet., 41, 32–46, 2010. aHonig, H., Miron, J., Lehrer, H., Jackoby, S., Zachut, M., Zinou, A., Portnick, Y., and Moallem, U.: Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate, J. Dairy Sci., 95, 3736–3742, 2012. a, b, c, dHübener, H., Bülow, K., Fooken, C., Früh, B., Hoffmann, P., Höpp, S., Keuler, K., Menz, C., Mohr, V., Radtke, K., Ramthun, H., Spekat, A., Steger, C., Toussaint, F., Warrach-Sagi, K., and Woldt, M.: ReKliEs-De Ergebnisbericht, Tech. rep., World Data Center for Climate (WDCC) at DKRZ, Hamburg, Germany, https://doi.org/10.2312/WDCC/ReKliEsDe_Ergebnisbericht, 2017. aHutchings, N., Sommer, S. G., and Jarvis, S.: A model of ammonia volatilization from a grazing livestock farm, Atmos. Environ., 30, 589–599, 1996. aJackson, P. and Cockcroft, P.: Clinical examination of farm animals, Wiley-Backwell, Hoboken, USA, 2008. aKadzere, C., Murphy, M., Silanikove, N., and Maltz, E.: Heat stress in lactating dairy cows: a review, Livest. Sci., 77, 59–91, 2002. a, b, c, d, eKafle, G. K., Joo, H., and Ndegwa, P. M.: Sampling Duration and Frequency for Determining Emission Rates from Naturally Ventilated Dairy Barns, T. ASABE, 61, 681–691, https://doi.org/10.13031/trans.12543, 2018. aKendall, P., Nielsen, P., Webster, J., Verkerk, G., Littlejohn, R., and Matthews, L.: The effects of providing shade to lactating dairy cows in a temperate climate, Livest. Sci., 103, 148–157, 2006. aKjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., Lenderink, G., van Meijgaard, E., Schär, C., Somot, S., Sørland, S. L., Teichmann, C., and Vautard, R.: European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models, Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, 2018. a, bKurukulasuriya, P. and Rosenthal, S.: Climate change and agriculture: A review of impacts and adaptations, Environment department papers, no. 91, Climate change series, World Bank, Washington, D.C., USA, 2013. aLees, J., Lees, A., and Gaughan, J.: Developing a heat load index for lactating dairy cows, Anim. Prod. Sci., 58, 1387–1391, https://doi.org/10.1071/AN17776, 2018. a, bLelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371, 2015. aMader, T. L., Davis, M., and Brown-Brandl, T.: Environmental factors influencing heat stress in feedlot cattle, J. Anim. Sci., 84, 712–719, 2006. a, b, cMader, T. L., Johnson, L., and Gaughan, J.: A
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Diesel® Plays the Fool: Translating Performance in Fashion Ads
This paper discusses the controversial “Be Stupid” advertising campaign by Diesel, recipient of the Grand Prix Lion at the Cannes International Advertising Festival (2010). Banned in some countries for its potentially negative impact on children, this campaign employs theatrical staging combined with provocative slogans, such as “Stupid Might Fail. Smart Doesn’t Even Try.” Illustrated with orginal images inspired by Diesel, the paper refers to prominent theorists and artists (from Derrida to Warhol) to consider the complex (and productive) relationship between translation and performance
The Ruby Slippers Across Time, Space and Media
This article discusses representations of Dorothy’s magical shoes in diverse media—from the original text by L. Frank Baum (1900) to the classic MGM film (1939) to Vogue’s 2005 fashion shoot by Annie Leibovitz. According to Salman Rushdie, “the real secret of the ruby slippers is not that ‘there’s no place like home’, but rather that there is no longer any such place as home.” Canadian designer John Fluevog shares this point of view, as exemplified most prominently by The Cosmos: Meteor shoes (2016), which celebrate the road as the destination itself. I compare Fluevog to Gucci’s flamboyant Star Trek-inspired campaign GucciandBeyond (2017), as well as the brand’s more recent Utopian Fantasy campaign (2018). The essay cites, among others, Alain de Botton and Andy Warhol, both professing their fascination with air travel. Additional critical sources include Dick Hebdige’s pioneering work on style subcultures, and MOMA’s recent volume on Fashion Is. The essay’s concluding sections discusses commercial appropriation of fashion, as well as fashion’s open-ended definition.Cet article discute des représentations des souliers magiques de Dorothée à travers divers médias—depuis le texte original de L. Frank Baum (1900), en passant par le film classique de MGM (1939), jusqu’à la série de photos d’Annie Leibovitz dans Vogue en 2005. Selon Salman Rushdie, “le vrai secret des chaussures rouges n’est pas que ‘there’s no place like home’ mais plutôt que le ‘home’ n’existe plus.” Le dessinateur de mode canadien John Fluevog partage cette opinion comme le montre de façon remarquable la collection de chaussures The Cosmos: Meteor (2016), qui célèbre la route comme la destination en elle-même. Je compare Fluevog à la campagne haute en couleur de Gucci inspirée par Star Trek, GucciandBeyond (2017), ainsi qu’à la campagne plus récente de la marque, intitulée Utopian Fantasy (2018). L’essai cite, entre autres, Alain de Botton et Andy Warhol, qui ont tous deux professé leur fascination pour le voyage aérien. D’autres sources critiques incluent le travail de Dick Hebdige, un des pionniers dans l’étude des subcultures du style, ainsi que le récent volume du MOMA, Fashion is. Les paragraphes de conclusion discutent de l’appropriation commerciale de la mode ainsi que de l’aspect constamment renouvelé de ce qui définit la mode