351 research outputs found

    Transvenous nonfluoroscopic pacemaker implantation during pregnancy guided by 3-dimensional electroanatomic mapping

    Get PDF
    Patients with congenital heart disease are at ongoing risk of developing both bradyarrhythmias and tachyarrhythmias decades after surgical repair. Rarely, arrhythmias can be exacerbated during pregnancy and require emergent intervention. Here, we report unique experience with nonfluoroscopic pacemaker implantation during pregnancy. Ionizing radiation, even in low doses, is associated with an increased risk of malignancy, and a fetus may be at particularly increased risk.1, 2 Over the past 2 decades, the use of fluoroscopy in cardiac ablation procedures has become nearly obsolete with the development of 3-dimensional (3D) electroanatomic mapping software such as CARTO (Biosense-Webster, Diamond Bar, CA) and NavX or EnSite (St. Jude Medical, Inc., St. Paul, MN).3 However, certain procedures, such as device implants, still commonly use fluoroscopy in most instances.2 Fluoroscopy use in patients with congenital heart disease is of utmost concern because of cumulative radiation exposure from multiple lifetime catheterization, radiographic and computed tomography imaging, and electrophysiological procedures

    Cardiac Complications in Acute Ischemic Stroke

    Get PDF
    <p>Introduction: To characterize cardiac complications in acute ischemic stroke (AIS) patients admitted from an urban emergency department (ED).</p> <p>Methods: Retrospective cross-sectional study evaluating AIS patients admitted from the ED within 24 hours of symptom onset who also had an echocardiogram performed within 72 hours of admission.</p> <p>Results: Two hundred AIS patients were identified with an overall in-hospital mortality rate of 8% (nΒΌ 16). In our cohort, 57 (28.5%) of 200 had an ejection fraction less than 50%, 35 (20.4%) of 171 had ischemic changes on electrocardiogram (ECG), 18 (10.5%) of 171 presented in active atrial fibrillation, 21 (13.0%) of 161 had serum troponin elevation, and 2 (1.1%) of 184 survivors had potentially lethal</p> <p>arrhythmias on telemetry monitoring. Subgroup analysis revealed higher in-hospital mortality rates among those with systolic dysfunction (15.8% versus 4.9%; P ΒΌ 0.0180), troponin elevation (38.1% versus 3.4%; P , 0.0001), atrial fibrillation on ECG (33.3% versus 3.8%; P ΒΌ 0.0003), and ischemic changes on ECG (17.1% versus 6.1%; P ΒΌ 0.0398) compared with those without.</p> <p>Conclusion: A proportion of AIS patients may have cardiac complications. Systolic dysfunction, troponin elevation, atrial fibrillation, or ischemic changes on ECG may be associated with higher inhospital mortality rates. These findings support the adjunctive role of cardiac-monitoring strategies in the acute presentation of AIS. [West J Emerg Med. 2011;12(4):414–420.]</p

    Cyclic AMP metabolism and adenylate cyclase concentration in patients with advanced hepatic cirrhosis

    Get PDF
    Glucagon was tested for its effect on plasma adenosine 3β€²,5β€²-cyclic monophosphate (cyclic AMP), insulin, and glucose in healthy subjects and in patients with advanced cirrhosis of the liver. In the normal subjects, intravenous infusion of glucagon caused a significant increase in plasma cyclic AMP, glucose, and insulin. In advanced cirrhotics, plasma cyclic AMP, glucose, and insulin did not increase. Adenylate cyclase concentration was measured in liver tissue from end stage cirrhotic patients and from brain-dead organ donors whose cardiovascular function was maintained in a stable state. Basal and total adenylate cyclase concentration were not different in the two groups. Adenylate cyclase from the livers of advanced cirrhotics was, however, significantly less responsive to glucagon stimulation than was that from donor livers. Hepatocytes in advanced cirrhosis have abnormal metabolic behavior characterized by abnormal adenylate cyclase-cyclic AMP response to hormonal stimulation. Β© 1978

    Student Recital (April 23, 2012)

    Get PDF
    Londonderry Air / Joseph McCarthy arr. Domenico Savino Alison Kenney, soprano Zueignung, Op. 10, No. 1 / Richard Strauss Diane M. Card, alto from Dichterliebe, Op. 48 / Robert Schumann Im wunderschonen Monat Mai Ein Jungling liebt ein Madchen Allnachtlich im Traume Greg Fernandes, bass Prelude No. 4 / Heitor Villa-Lobos Nick Rice, guitar Kind of In Love / John Harbison Why / Jonathan Larson Samuel Lathrop, tenor Sonata for Saxophone in Eb and Piano / Bernard Heiden Chelsea Fisk, alto saxophone The Crucifixion, Op. 29, No. 5 / Samuel Barber Mary Sanker, soprano Sicilienne, Op. 78 / Gabriel Faure Charles Sherwin, trombone Sonata for Trumpet and Piano / Eric Ewazen II. James Sheehan, trumpethttps://vc.bridgew.edu/student_concerts/1035/thumbnail.jp

    The Impossibility of a Perfectly Competitive Labor Market

    Get PDF
    Using the institutional theory of transaction cost, I demonstrate that the assumptions of the competitive labor market model are internally contradictory and lead to the conclusion that on purely theoretical grounds a perfectly competitive labor market is a logical impossibility. By extension, the familiar diagram of wage determination by supply and demand is also a logical impossibility and the neoclassical labor demand curve is not a well-defined construct. The reason is that the perfectly competitive market model presumes zero transaction cost and with zero transaction cost all labor is hired as independent contractors, implying multi-person firms, the employment relationship, and labor market disappear. With positive transaction cost, on the other hand, employment contracts are incomplete and the labor supply curve to the firm is upward sloping, again causing the labor demand curve to be ill-defined. As a result, theory suggests that wage rates are always and everywhere an amalgam of an administered and bargained price. Working Paper 06-0

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281–1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of β€˜large’ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the β€˜smaller’ arteries and veins of radii β‰₯ 50 ΞΌ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung

    The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Get PDF
    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013-14 using two detector arrays at 149 GHz, from 548 deg2^2 of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the LCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. Adding the new data to planck temperature data tightens the limits on damping tail parameters, for example reducing the joint uncertainty on the number of neutrino species and the primordial helium fraction by 20%.Comment: 23 pages, 25 figure

    Dedicated JPSS VIIRS Ocean Color Calibration/Validation Cruise

    Get PDF
    The NOAA/STAR ocean color team is focused on β€œend-to-end” production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, β€œfit for purpose” remotely sensed ocean color products that are required and expected by all NOAA line offices, as well as by external (both applied and research) users. In addition to serving the needs of its diverse users within the U.S., NOAA has an ever increasing role in supporting the international ocean color community and is actively engaged in the International Ocean-Colour Coordinating Group (IOCCG). The IOCCG, along with the Committee on Earth Observation Satellites (CEOS) Ocean Colour Radiometry Virtual Constellation (OCR-VC), is developing the International Network for Sensor Inter-comparison and Uncertainty assessment for Ocean Color Radiometry (INSITU-OCR). The INSITU-OCR has identified, amongst other issues, the crucial need for sustained in situ observations for product validation, with longterm measurement programs established and maintained beyond any individual mission. Recently, the NOAA/STAR Ocean Color Team has been making in situ validation measurements continually since the launch in fall 2011 of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) platform, part of the U.S. Joint Polar Satellite System (JPSS) program. NOAA ship time for the purpose of ocean color validation, however, had never been allocated until the cruise described herein. As the institutional lead for this cruise, NOAA/STAR invited external collaborators based on scientific objectives and existing institutional collaborations. The invited collaborators are all acknowledged professionals in the ocean color remote sensing community. Most of the cruise principal investigators (PIs) are also PIs of the VIIRS Ocean Color Calibration and Validation (Cal/Val) team, including groups from Stennis Space Center/Naval Research Laboratory (SSC/NRL) and the University of Southern Mississippi (USM); City College of New York (CCNY); University of Massachusetts Boston (UMB); University of South Florida (USF); University of Miami (U. Miami); and, the National Institute of Standards and Technology (NIST). These Cal/Val PIs participated directly, sent qualified researchers from their labs/groups, or else contributed specific instruments or equipment. Some of the cruise PIs are not part of the NOAA VIIRS Ocean Color Cal/Val team but were chosen to complement and augment the strengths of the Cal/Val team participants. Outside investigator groups included NASA Goddard Space Flight Center (NASA/GSFC), Lamont-Doherty Earth Observatory at Columbia University (LDEO), and the Joint Research Centre of the European Commission (JRC). This report documents the November 2014 cruise off the U.S. East Coast aboard the NOAA Ship Nancy Foster. This cruise was the first dedicated ocean color validation cruise to be supported by the NOAA Office of Marine and Air Operations (OMAO). A second OMAO-supported cruise aboard the Nancy Foster is being planned for late 2015. We at NOAA/STAR are looking forward to continuing dedicated ocean color validation cruises, supported by OMAO on NOAA vessels, on an annual basis in support of JPSS VIIRS on SNPP, J-1, J-2 and other forthcoming satellite ocean color missions from the U.S as well as other countries. We also look forward to working with the U.S. and the international ocean community for improving our understanding of global ocean optical, biological, and biogeochemical properties.JRC.H.1-Water Resource

    Pharmacokinetic/pharmacodynamic modelling approaches in paediatric infectious diseases and immunology.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modelling is used to describe and quantify dose-concentration-effect relationships. Within paediatric studies in infectious diseases and immunology these methods are often applied to developing guidance on appropriate dosing. In this paper, an introduction to the field of PKPD modelling is given, followed by a review of the PKPD studies that have been undertaken in paediatric infectious diseases and immunology. The main focus is on identifying the methodological approaches used to define the PKPD relationship in these studies. The major findings were that most studies of infectious diseases have developed a PK model and then used simulations to define a dose recommendation based on a pre-defined PD target, which may have been defined in adults or in vitro. For immunological studies much of the modelling has focused on either PK or PD, and since multiple drugs are usually used, delineating the relative contributions of each is challenging. The use of dynamical modelling of in vitro antibacterial studies, and paediatric HIV mechanistic PD models linked with the PK of all drugs, are emerging methods that should enhance PKPD-based recommendations in the future
    • …
    corecore