78 research outputs found

    The Westerbork HI Survey of spiral and irregular galaxies III: HI observations of early-type disk galaxies

    Get PDF
    We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of the disk galaxy population, few of which have been imaged in HI before. The HI properties of the galaxies in our sample span a large range; the average values of M_HI/L_B and D_HI/D_25 are comparable to the ones found in later-type spirals, but the dispersions around the mean are larger. No significant differences are found between the S0/S0a and the Sa/Sab galaxies. Our early-type disk galaxies follow the same HI mass-diameter relation as later-type spiral galaxies, but their effective HI surface densities are slightly lower than those found in later-type systems. In some galaxies, distinct rings of HI emission coincide with regions of enhanced star formation, even though the average gas densities are far below the threshold of star formation derived by Kennicutt (1989). Apparently, additional mechanisms, as yet unknown, regulate star formation at low surface densities. Many of the galaxies in our sample have lopsided gas morphologies; in most cases this can be linked to recent or ongoing interactions or merger events. Asymmetries are rare in quiescent galaxies. Kinematic lopsidedness is rare, both in interacting and isolated systems. In the appendix, we present an atlas of the HI observations: for all galaxies we show HI surface density maps, global profiles, velocity fields and radial surface density profiles.Comment: 24 pages, 11 figures. Accepted for publication in A&A. A version with the full atlas can be downloaded from http://www.astro.rug.nl/~edo/WHISPIII.ps.gz (gzipped postscript, 9.3Mb

    Transcriptome-Based Differentiation of Closely-Related Miscanthus Lines

    Get PDF
    BACKGROUND: Distinguishing between individuals is critical to those conducting animal/plant breeding, food safety/quality research, diagnostic and clinical testing, and evolutionary biology studies. Classical genetic identification studies are based on marker polymorphisms, but polymorphism-based techniques are time and labor intensive and often cannot distinguish between closely related individuals. Illumina sequencing technologies provide the detailed sequence data required for rapid and efficient differentiation of related species, lines/cultivars, and individuals in a cost-effective manner. Here we describe the use of Illumina high-throughput exome sequencing, coupled with SNP mapping, as a rapid means of distinguishing between related cultivars of the lignocellulosic bioenergy crop giant miscanthus (Miscanthus × giganteus). We provide the first exome sequence database for Miscanthus species complete with Gene Ontology (GO) functional annotations. RESULTS: A SNP comparative analysis of rhizome-derived cDNA sequences was successfully utilized to distinguish three Miscanthus × giganteus cultivars from each other and from other Miscanthus species. Moreover, the resulting phylogenetic tree generated from SNP frequency data parallels the known breeding history of the plants examined. Some of the giant miscanthus plants exhibit considerable sequence divergence. CONCLUSIONS: Here we describe an analysis of Miscanthus in which high-throughput exome sequencing was utilized to differentiate between closely related genotypes despite the current lack of a reference genome sequence. We functionally annotated the exome sequences and provide resources to support Miscanthus systems biology. In addition, we demonstrate the use of the commercial high-performance cloud computing to do computational GO annotation

    Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults

    Get PDF
    Introduction: The aim of this study was to develop consensus recommendations on safety parameters for mobilizing adult, mechanically ventilated, intensive care unit (ICU) patients. Methods: A systematic literature review was followed by a meeting of 23 multidisciplinary ICU experts to seek consensus regarding the safe mobilization of mechanically ventilated patients. Results: Safety considerations were summarized in four categories: respiratory, cardiovascular, neurological and other. Consensus was achieved on all criteria for safe mobilization, with the exception being levels of vasoactive agents. Intubation via an endotracheal tube was not a contraindication to early mobilization and a fraction of inspired oxygen less than 0.6 with a percutaneous oxygen saturation more than 90% and a respiratory rate less than 30 breaths/minute were considered safe criteria for in- and out-of-bed mobilization if there were no other contraindications. At an international meeting, 94 multidisciplinary ICU clinicians concurred with the proposed recommendations. Conclusion: Consensus recommendations regarding safety criteria for mobilization of adult, mechanically ventilated patients in the ICU have the potential to guide ICU rehabilitation whilst minimizing the risk of adverse events

    Explicitly searching for useful inventions: dynamic relatedness and the costs of connecting versus synthesizing

    Get PDF
    Inventions combine technological features. When features are barely related, burdensomely broad knowledge is required to identify the situations that they share. When features are overly related, burdensomely broad knowledge is required to identify the situations that distinguish them. Thus, according to my first hypothesis, when features are moderately related, the costs of connecting and costs of synthesizing are cumulatively minimized, and the most useful inventions emerge. I also hypothesize that continued experimentation with a specific set of features is likely to lead to the discovery of decreasingly useful inventions; the earlier-identified connections reflect the more common consumer situations. Covering data from all industries, the empirical analysis provides broad support for the first hypothesis. Regressions to test the second hypothesis are inconclusive when examining industry types individually. Yet, this study represents an exploratory investigation, and future research should test refined hypotheses with more sophisticated data, such as that found in literature-based discovery research

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore