278 research outputs found

    Precision constraints on radiative neutrino decay with CMB spectral distortion

    Get PDF
    We investigate the radiative decay of the cosmic neutrino background, and its impact on the spectrum of the cosmic microwave background (CMB) that is known to be a nearly perfect black body. We derive exact formulae for the decay of a heavier neutrino into a lighter neutrino and a photon, νj→νi+γ\nu_j \to \nu_i + \gamma, and of absorption as its inverse, νi+γ→νj\nu_i + \gamma \to \nu_j, by accounting for the precise form of the neutrino momentum distribution. Our calculations show that if the neutrinos are heavier than O(0.1)\mathcal O(0.1) eV, the exact formulae give results that differ by ∼\sim50%, compared with approximate ones where neutrinos are assumed to be at rest. We also find that spectral distortion due to absorption is more important for heavy neutrino masses (by a factor of ∼\sim10 going from a neutrino mass of 0.01 eV to 0.1 eV). By analyzing the CMB spectral data measured with COBE-FIRAS, we obtain lower limits on the neutrino lifetime of τ12≳4×1021\tau_{12} \gtrsim 4 \times 10^{21} s (95% C.L.) for the smaller mass splitting and τ13∼τ23≳1019\tau_{13} \sim \tau_{23} \gtrsim 10^{19} s for the larger mass splitting. These represent up to one order of magnitude improvement over previous CMB constraints. With future CMB experiments such as PIXIE, these limits will improve by roughly 4 orders of magnitude. This translates to a projected upper limit on the neutrino magnetic moment (for certain neutrino masses and decay modes) of μν<3×10−11 μB\mu_\nu < 3 \times 10^{-11}\, \mu_B, where μB\mu_B is the Bohr magneton. Such constraints would make future precision CMB measurements competitive with lab-based constraints on neutrino magnetic moments.Comment: 14 pages, 9 figures. v2: Added a number of references and clarifications. Matches version published in PR

    Impact of dark matter subhalos on extended HI disks of galaxies: Possible formation of HI fine structures and stars

    Full text link
    Recent observations have discovered star formation activities in the extreme outer regions of disk galaxies. However it remains unclear what physical mechanisms are responsible for triggering star formation in such low-density gaseous environments of galaxies. In order to understand the origin of these outer star-forming regions, we numerically investigate how the impact of dark matter subhalos orbiting a gas-rich disk galaxy embedded in a massive dark matter halo influences the dynamical evolution of outer HI gas disk of the galaxy. We find that if the masses of the subhalos (MsbM_{\rm sb}) in a galaxy with an extended HI gas disk are as large as 10−3×Mh10^{-3} \times M_{\rm h}, where MhM_{\rm h} is the total mass of the galaxy's dark halo, local fine structures can be formed in the extended HI disk. We also find that the gas densities of some apparently filamentary structures can exceed a threshold gas density for star formation and thus be likely to be converted into new stars in the outer part of the HI disk in some models with larger MsbM_{\rm sb}. These results thus imply that the impact of dark matter subhalos (``dark impact'') can be important for better understanding the origin of recent star formation discovered in the extreme outer regions of disk galaxies. We also suggest that characteristic morphologies of local gaseous structures formed by the dark impact can indirectly prove the existence of dark matter subhalos in galaxies. We discuss the origin of giant HI holes observed in some gas-rich galaxies (e.g., NGC 6822) in the context of the dark impact.Comment: 8 pages, 4 figures, accepted by ApJ

    Identifying the Environment and Redshift of GRB Afterglows from the Time-Dependence of Their Absorption Spectra

    Get PDF
    The discovery of Gamma-Ray Burst (GRB) afterglows revealed a new class of variable sources at optical and radio wavelengths. At present, the environment and precise redshift of the detected afterglows are still unknown. We show that if a GRB source resides in a compact (<100pc) gas-rich environment, the afterglow spectrum will show time-dependent absorption features due to the gradual ionization of the surrounding medium by the afterglow radiation. Detection of this time-dependence can be used to constrain the size and density of the surrounding gaseous system. For example, the MgII absorption line detected in GRB970508 should have weakened considerably during the first month if the absorption occurred in a gas cloud of size <100pc around the source. The time-dependent HI or metal absorption features provide a precise determination of the GRB redshift.Comment: 13 pages, 4 figures, submitted to ApJ

    Modeling Non-Circular Motions in Disk Galaxies: Application to NGC 2976

    Get PDF
    We present a new procedure to fit non-axisymmetric flow patterns to 2-D velocity maps of spiral galaxies. We concentrate on flows caused by bar-like or oval distortions to the total potential that may arise either from a non-axially symmetric halo or a bar in the luminous disk. We apply our method to high-quality CO and Halpha data for the nearby, low-mass spiral NGC 2976 previously obtained by Simon et al., and find that a bar-like model fits the data at least as well as their model with large radial flows. We find supporting evidence for the existence of a bar in the baryonic disk. Our model suggests that the azimuthally averaged central attraction in the inner part of this galaxy is larger than estimated by these authors. It is likely that the disk is also more massive, which will limit the increase to the allowed dark halo density. Allowance for bar-like distortions in other galaxies may either increase or decrease the estimated central attraction.Comment: 12 pages, 6 figures, accepted for publication in ApJ. v2: minor changes to match proofs. For version with high-resolution figures, see http://www.physics.rutgers.edu/~spekkens/papers/noncirc.pd

    The Structure of Dark Matter Haloes in Dwarf Galaxies

    Get PDF
    Recent observations indicate that dark matter haloes have flat central density profiles. Cosmological simulations with non-baryonic dark matter predict however self similar haloes with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter haloes of dwarf spiral galaxies represent a one parameter family with self similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the haloes formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.Comment: uuencoded Z-compressed postscript file, 10 pages, 3 figures included, to appear in ApJ Letter

    Origin of structural and kinematical properties of the Small Magellanic Cloud

    Full text link
    We investigate structural, kinematical, and chemical properties of stars and gas in the Small Magellanic Cloud (SMC) interacting with the Large Magellanic Cloud (LMC) and the Galaxy based on a series of self-consistent chemodynamical simulations. We adopt a new "dwarf spheroidal model" in which the SMC initially has both old stars with a spherical spatial distribution and an extended HI gas disk. We mainly investigate SMC's evolution for the last 3 Gyr within which the Magellanic stream (MS) and the Magellanic bridge (MB) can be formed as a result of the LMC-SMC-Galaxy interaction. Our principal results, which can be tested against observations, are as follows. The final spatial distribution of the old stars projected onto the sky is spherical even after the strong LMC-SMC-Galaxy interaction, whereas that of the new ones is significantly flattened and appears to form a bar structure. Old stars have the line-of-sight velocity dispersion (sigma) of ~ 30 km/s and slow rotation with the maximum rotational velocity (V) of less than slow rotation with the maximum rotational velocity (V) of less than 20 km/s and show asymmetry in the radial profiles. New stars have a smaller sigma than old ones and a significant amount of rotation (V/sigma >1). HI gas shows velocity dispersions of sigma = 10-40 km/s a high maximum rotational velocity (V ~ 50 km/s), and the spatial distribution similar to that of new stars. The new stars with ages younger than 3 Gyr show a negative metallicity gradient in the sense that more metal-rich stars are located in the inner regions of the SMC.Comment: 21 pages, 21 figures (5 color), accepted by PAS

    Rotational Widths for Use in the Tully-Fisher Relation. II. The Impact of Surface Brightness

    Full text link
    Using a large sample of spiral galaxies for which 21 cm single-dish and/or long-slit optical spectra are available, we make a detailed comparison between various estimates of rotational widths. Different optical width estimators are considered and their limitations discussed, with emphasis on biases associated with rotation curve properties (shape and extent) and disk central surface brightness. The best match with HI rotational velocities is obtained with Polyex widths, which are measured at the optical radius (encompassing a fixed fraction of the total light of the galaxy) from a model fit to the rotation curve. In contrast with Polyex widths, optical rotational velocities measured at 2.15 disk scale lengths r_d deviate from HI widths by an amount that correlates with the central surface brightness of the disk. This bias occurs because the rotation curves of galaxies are in general still rising at 2.15 r_d, and the fraction of total mass contained within this radius decreases with increasing disk surface brightness. Statistical corrections, parameterized by the radial extent of the observed rotation curve, are provided to reduce Polyex and HI width measurements into a homogeneous system. This yields a single robust estimate of rotational velocity to be used for applications of disk scaling relations.Comment: 13 pages, 8 figures. To appear in the Astronomical Journal (August 2007

    Scattering of low energy noble gas ions from a metal surface:a study of the neutralization and ionization phenomena for keV argon and neon particles scattered from a monocrystalline copper (100) surface

    Get PDF
    Het werk beschreven in dit proefschrift heeft betrekking op de verstrooiing van lage energie ( 0.1 - 10 keV) edelgas ionen door metaal oppervlakken. Deze techniek wordt gebruikt om de samenstelling en de structuur van de allerbuitenste oppervlakte laag te bepalen Dit is van belang voor de bestudering van o.a. katalyse en corrosie. ... Zie: Smanvatting

    The Cloudy Universe

    Get PDF
    Modelling of Extreme Scattering Events suggests that the Galaxy's dark matter is an undetected population of cold, AU-sized, planetary-mass gas clouds. None of the direct observational constraints on this picture -- thermal/non-thermal emission, extinction and lensing -- are problematic. The theoretical situation is less comfortable, but still satisfactory. Galactic clouds can survive in their current condition for billions of years, but we do not have a firm description for either their origin or their evolution to the present epoch. We hypothesise that the proto-clouds formed during the quark-hadron phase transition, thereby introducing the inhomogeneity necessary for compatibility with light element nucleosynthesis in a purely baryonic universe. We outline the prospects for directly detecting the inferred cloud population. The most promising signatures are cosmic-ray-induced H-alpha emission from clouds in the solar neighbourhood, optical flashes arising from cloud-cloud collisions, ultraviolet extinction, and three varieties of lensing phenomena.Comment: 16 pages, LaTeX, no figures, to appear in Pub. Ast. Soc. Au
    • …
    corecore