47 research outputs found
GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst
GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50
years of study. In this paper, we present observations in the X-ray and optical
domains after the GRB obtained by the GRANDMA Collaboration (which includes
observations from more than 30 professional and amateur telescopes) and the
Insight-HXMT Collaboration. We study the optical afterglow with empirical
fitting from GRANDMA+HXMT data, augmented with data from the literature up to
60 days. We then model numerically, using a Bayesian approach, the GRANDMA and
HXMT-LE afterglow observations, that we augment with Swift-XRT and additional
optical/NIR observations reported in the literature. We find that the GRB
afterglow, extinguished by a large dust column, is most likely behind a
combination of a large Milky-Way dust column combined with moderate
low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT dataset,
we find that the simplest model, where the observed afterglow is produced by
synchrotron radiation at the forward external shock during the deceleration of
a top-hat relativistic jet by a uniform medium, fits the multi-wavelength
observations only moderately well, with a tension between the observed temporal
and spectral evolution. This tension is confirmed when using the extended
dataset. We find that the consideration of a jet structure (Gaussian or
power-law), the inclusion of synchrotron self-Compton emission, or the presence
of an underlying supernova do not improve the predictions, showing that the
modelling of GRB22109A will require going beyond the most standard GRB
afterglow model. Placed in the global context of GRB optical afterglows, we
find the afterglow of GRB 221009A is luminous but not extraordinarily so,
highlighting that some aspects of this GRB do not deviate from the global known
sample despite its extreme energetics and the peculiar afterglow evolution.Comment: Accepted to ApJL for the special issue, 37 pages, 23 pages main text,
6 tables, 13 figure
Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022
We present a campaign designed to train the GRANDMA network and its
infrastructure to follow up on transient alerts and detect their early
afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they
are expected to be an electromagnetic counterpart of gravitational-wave events.
Our goal was to improve our response to the alerts and start prompt
observations as soon as possible to better prepare the GRANDMA network for the
fourth observational run of LIGO-Virgo-Kagra (which started at the end of May
2023), and future missions such as SM. To receive, manage and send out
observational plans to our partner telescopes we set up dedicated
infrastructure and a rota of follow-up adcates were organized to guarantee
round-the-clock assistance to our telescope teams. To ensure a great number of
observations, we focused on Swift GRBs whose localization errors were generally
smaller than the GRANDMA telescopes' field of view. This allowed us to bypass
the transient identification process and focus on the reaction time and
efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB
triggers were selected, nine fields had been observed, and three afterglows
were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA
telescopes and 17 amateur astronomers from the citizen science project
Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our
long-term follow-up of the host galaxy allowed us to obtain a photometric
redshift of , its lightcurve elution, fit the decay slope of the
afterglows, and study the properties of the host galaxy
Multi-band analyses of the bright GRB~230812B and the associated SN2023pel
GRB~230812B is a bright and relatively nearby () long gamma-ray
burst that has generated significant interest in the community and therefore
has been subsequently observed over the entire electromagnetic spectrum. We
report over 80 observations in X-ray, ultraviolet, optical, infrared, and
sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for
Multi-messenger Addicts) network of observatories and from observational
partners. Adding complementary data from the literature, we then derive
essential physical parameters associated with the ejecta and external
properties (i.e. the geometry and environment) and compare with other analyses
of this event (e.g. Srinivasaragavan et al. 2023). We spectroscopically confirm
the presence of an associated supernova, SN2023pel, and we derive a
photospheric expansion velocity of v 17 km . We
analyze the photometric data first using empirical fits of the flux and then
with full Bayesian Inference. We again strongly establish the presence of a
supernova in the data, with an absolute peak r-band magnitude . We find a flux-stretching factor or relative brightness and a time-stretching factor ,
both compared to SN1998bw. Therefore, GRB 230812B appears to have a clear long
GRB-supernova association, as expected in the standard collapsar model.
However, as sometimes found in the afterglow modelling of such long GRBs, our
best fit model favours a very low density environment (). We also find small values for
the jet's core angle and
viewing angle. GRB 230812B/SN2023pel is one of the best characterized
afterglows with a distinctive supernova bump
A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS measured from stellar occultations
This work aims at constraining the size, shape, and geometric albedo of the
dwarf planet candidate 2002 MS4 through the analysis of nine stellar
occultation events. Using multichord detection, we also studied the object's
topography by analyzing the obtained limb and the residuals between observed
chords and the best-fitted ellipse. We predicted and organized the
observational campaigns of nine stellar occultations by 2002 MS4 between 2019
and 2022, resulting in two single-chord events, four double-chord detections,
and three events with three to up to sixty-one positive chords. Using 13
selected chords from the 8 August 2020 event, we determined the global
elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the
object's rotational information from the literature, constrains the object's
size, shape, and albedo. Additionally, we developed a new method to
characterize topography features on the object's limb. The global limb has a
semi-major axis of 412 10 km, a semi-minor axis of 385 17 km, and
the position angle of the minor axis is 121 16. From
this instantaneous limb, we obtained 2002 MS4's geometric albedo and the
projected area-equivalent diameter. Significant deviations from the fitted
ellipse in the northernmost limb are detected from multiple sites highlighting
three distinct topographic features: one 11 km depth depression followed by a
25 km height elevation next to a crater-like depression with an
extension of 322 39 km and 45.1 1.5 km deep. Our results present an
object that is 138 km smaller in diameter than derived from thermal
data, possibly indicating the presence of a so-far unknown satellite. However,
within the error bars, the geometric albedo in the V-band agrees with the
results published in the literature, even with the radiometric-derived albedo
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Multiband analyses of the bright GRB 230812B and the associated SN2023pel
GRB 230812B is a bright and relatively nearby (z = 0.36) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and submillimetre bands from the GRANDMA (Global Rapid Advanced Network for Multimessenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v ⌠17 Ă 103 km s-1. We analyse the photometric data first using empirical fits of the flux and then with full Bayesian inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of 5.75 Ă 1042 erg s-1, at 15.76+-10.2181 d (in the observer frame) after the trigger, with a half-max time width of 22.0 d. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fitting model favours a very low density environment (log10(nISM/cm-3) = -2.38+-11.6045) and small values for the jet's core angle Ξcore = 1.54+-01.8102 deg and viewing angle Ξobs = 0.76+-01.7629 deg. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later
designated GW170817) with merger time 12:41:04 UTC was observed through
gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray
burst (GRB 170817A) with a time delay of ⌠1.7 {{s}} with respect to
the merger time. From the gravitational-wave signal, the source was
initially localized to a sky region of 31 deg2 at a
luminosity distance of {40}-8+8 Mpc and with
component masses consistent with neutron stars. The component masses
were later measured to be in the range 0.86 to 2.26 {M}ÈŻ
. An extensive observing campaign was launched across the
electromagnetic spectrum leading to the discovery of a bright optical
transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC
4993 (at ⌠40 {{Mpc}}) less than 11 hours after the merger by the
One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
optical transient was independently detected by multiple teams within an
hour. Subsequent observations targeted the object and its environment.
Early ultraviolet observations revealed a blue transient that faded
within 48 hours. Optical and infrared observations showed a redward
evolution over âŒ10 days. Following early non-detections, X-ray and
radio emission were discovered at the transientâs position ⌠9
and ⌠16 days, respectively, after the merger. Both the X-ray and
radio emission likely arise from a physical process that is distinct
from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with
the source were found in follow-up searches. These observations support
the hypothesis that GW170817 was produced by the merger of two neutron
stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and
a kilonova/macronova powered by the radioactive decay of r-process
nuclei synthesized in the ejecta.</p
Quels sont les effets du sexe et des différentes dominances, manuelle, visuelle et podale sur les blessures du jeune sportif de 15 à 17 ans
International audienc
Quelles sont les différentes dominances, manuelle, visuelle et podale du jeune sportif de 15 à 17 ans et quels sont les effets du sexe
International audienc