91 research outputs found

    Peripersonal space representation develops independently from visual experience

    Get PDF
    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation

    Spatio-Temporal Features of Visual Exploration in Unilaterally Brain-Damaged Subjects with or without Neglect: Results from a Touchscreen Test

    Get PDF
    Cognitive assessment in a clinical setting is generally made by pencil-and-paper tests, while computer-based tests enable the measurement and the extraction of additional performance indexes. Previous studies have demonstrated that in a research context exploration deficits occur also in patients without evidence of unilateral neglect at pencil-and-paper tests. The objective of this study is to apply a touchscreen-based cancellation test, feasible also in a clinical context, to large groups of control subjects and unilaterally brain-damaged patients, with and without unilateral spatial neglect (USN), in order to assess disturbances of the exploratory skills. A computerized cancellation test on a touchscreen interface was used for assessing the performance of 119 neurologically unimpaired control subjects and 193 patients with unilateral right or left hemispheric brain damage, either with or without USN. A set of performance indexes were defined including Latency, Proximity, Crossings and their spatial lateral gradients, and Preferred Search Direction. Classic outcome scores were computed as well. Results show statistically significant differences among groups (assumed p<0.05). Right-brain-damaged patients with USN were significantly slower (median latency per detected item was 1.18 s) and less efficient (about 13 search-path crossings) in the search than controls (median latency 0.64 s; about 3 crossings). Their preferred search direction (53.6% downward, 36.7% leftward) was different from the one in control patients (88.2% downward, 2.1% leftward). Right-brain-damaged patients without USN showed a significantly abnormal behavior (median latency 0.84 s, about 5 crossings, 83.3% downward and 9.1% leftward direction) situated half way between controls and right-brain-damaged patients with USN. Left-brain-damaged patients without USN were significantly slower and less efficient than controls (latency 1.19 s, about 7 crossings), preserving a normal preferred search direction (93.7% downward). Therefore, the proposed touchscreen-based assessment had evidenced disorders in spatial exploration also in patients without clinically diagnosed USN

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Putting ourselves in another’s skin: using the plasticity of self-perception to enhance empathy and decrease prejudice

    Get PDF
    The self is one the most important concepts in social cognition and plays a crucial role in determining questions such as which social groups we view ourselves as belonging to and how we relate to others. In the past decade, the self has also become an important topic within cognitive neuroscience with an explosion in the number of studies seeking to understand how different aspects of the self are represented within the brain. In this paper, we first outline the recent research on the neurocognitive basis of the self and highlight a key distinction between two forms of self-representation. The first is the “bodily” self, which is thought to be the basis of subjective experience and is grounded in the processing of sensorimotor signals. The second is the “conceptual” self, which develops through our interactions of other and is formed of a rich network of associative and semantic information. We then investigate how both the bodily and conceptual self are related to social cognition with an emphasis on how self-representations are involved in the processing and creation of prejudice. We then highlight new research demonstrating that the bodily and conceptual self are both malleable and that this malleability can be harnessed in order to achieve a reduction in social prejudice. In particular, we will outline strong evidence that modulating people’s perceptions of the bodily self can lead to changes in attitudes at the conceptual level. We will highlight a series of studies demonstrating that social attitudes towards various social out-groups (e.g. racial groups) can lead to a reduction in prejudice towards that group. Finally, we seek to place these findings in a broader social context by considering how innovations in virtual reality technology can allow experiences of taking on another’s identity are likely to become both more commonplace and more convincing in the future and the various opportunities and risks associated with using such technology to reduce prejudice

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams

    Malattie emorragiche vascolari.

    No full text
    Le malattie emorragiche di origine vascolare sono causate da difetti nelle pareti dei vasi o del tessuto perivascolare, in assenza di deficienze piastriniche o della coagulazione. Di solito non sono gravi e si manifestano con ecchimosi o emorragie cutanee che terminano in breve tempo. Alterazioni delle pareti vasali o del tessuto perivascolare, in assenza di deficienze piastriniche o coagulatorie, Possono causare manifestazioni emorragiche per difetto dell’emostasi legato ad aumento della fragilità vascolare a livello venulare, capillare e arteriolare. Un’entità nosologica ben definita è la telangectasia emorragica ereditaria, mentre più incerta è la definizione delle porpore, che si possono distinguere in porpore non allergiche, a eziologia varia, e porpore allergiche, con il carattere di vasculiti a livello della microcircolazione sottocutanea

    Clinical observations on the relationship between idiopathic thrombocytopenic purpura lupus anticoagulant and anticardio-lipin antibody syndrome.

    No full text
    Relationships between idiopathic thrombocytopenic purpura, lupus anticoagulant and anticardio-lipin antibody syndrome. Clinical observations and effects on spleenectomy risk

    A photometric assay for factor-XIII in chronic hepatopathies.

    No full text
    Investigation of possible factor XIII circulating low levels in chronic hepatopathies by a photometric assay. Effects on disease prognosis
    corecore