110 research outputs found
Virus shapes and buckling transitions in spherical shells
We show that the icosahedral packings of protein capsomeres proposed by
Caspar and Klug for spherical viruses become unstable to faceting for
sufficiently large virus size, in analogy with the buckling instability of
disclinations in two-dimensional crystals. Our model, based on the nonlinear
physics of thin elastic shells, produces excellent one parameter fits in real
space to the full three-dimensional shape of large spherical viruses. The
faceted shape depends only on the dimensionless Foppl-von Karman number
\gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the
protein shell, \kappa is its bending rigidity and R is the mean virus radius.
The shape can be parameterized more quantitatively in terms of a spherical
harmonic expansion. We also investigate elastic shell theory for extremely
large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral
shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure
Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models
Kinetically constrained models (KCMs) have been used to study and understand
the origin of glassy dynamics. Despite having trivial thermodynamic properties,
their dynamics slows down dramatically at low temperatures while displaying
dynamical heterogeneity as seen in glass forming supercooled liquids. This
dynamics has its origin in an ergodic-nonergodic first-order phase transition
between phases of distinct dynamical "activity". This is a "space-time"
transition as it corresponds to a singular change in ensembles of trajectories
of the dynamics rather than ensembles of configurations. Here we extend these
ideas to driven glassy systems by considering KCMs driven into non-equilibrium
steady states through non-conservative forces. By classifying trajectories
through their entropy production we prove that driven KCMs also display an
analogous first-order space-time transition between dynamical phases of finite
and vanishing entropy production. We also discuss how trajectories with rare
values of entropy production can be realized as typical trajectories of a
mapped system with modified forces
ATP Changes the Fluorescence Lifetime of Cyan Fluorescent Protein via an Interaction with His148
Recently, we described that ATP induces changes in YFP/CFP fluorescence intensities of Fluorescence Resonance Energy Transfer (FRET) sensors based on CFP-YFP. To get insight into this phenomenon, we employed fluorescence lifetime spectroscopy to analyze the influence of ATP on these fluorescent proteins in more detail. Using different donor and acceptor pairs we found that ATP only affected the CFP-YFP based versions. Subsequent analysis of purified monomers of the used proteins showed that ATP has a direct effect on the fluorescence lifetime properties of CFP. Since the fluorescence lifetime analysis of CFP is rather complicated by the existence of different lifetimes, we tested a variant of CFP, i.e. Cerulean, as a monomer and in our FRET constructs. Surprisingly, this CFP variant shows no ATP concentration dependent changes in the fluorescence lifetime. The most important difference between CFP and Cerulean is a histidine residue at position 148. Indeed, changing this histidine in CFP into an aspartic acid results in identical fluorescence properties as observed for the Cerulean fluorescent based FRET sensor. We therefore conclude that the changes in fluorescence lifetime of CFP are affected specifically by possible electrostatic interactions of the negative charge of ATP with the positively charged histidine at position 148. Clearly, further physicochemical characterization is needed to explain the sensitivity of CFP fluorescence properties to changes in environmental (i.e. ATP concentrations) conditions
Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice
Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-ÎČ-amyloid antibody. Our data suggest a biomarker strategy for the early detection of ÎČ-amyloid-related abnormalities
A randomized, exploratory molecular imaging study targeting amyloid beta with a novel 8-OH quinoline in Alzheimer's disease (The PBT2-204 IMAGINE study)
Introduction: We are developing a second generation 8-OH quinoline (2-(dimethylamino) methyl-5, 7-dichloro-8-hydroxyquinoline [PBT2, Prana Biotechnology]) for targeting amyloid ÎČ (AÎČ) in Alzheimer's disease (AD). In an earlier phase IIa, 3 month trial, PBT2 lowered cerebrospinal fluid AÎČ by 13% and improved cognition (executive function) in a dose-related fashion in early AD. We, therefore, sought to learn whether PBT2 could alter the AÎČ-PET signal in subjects with prodromal or mild AD, in an exploratory randomized study over a 12-month phase in a double-blind and a 12-month open label extension phase trial design. Methods: For inclusion, the usual clinical criteria for prodromal or probable AD, Mini-Mental State Examination â„20, and global Pittsburgh compound B (PiB)-PET standardized uptake volume ratio (SUVR) >1.7 were used. As this was an exploratory study, we included contemporaneous matched control data from the Australian Imaging Biomarker and Lifestyle Study (AIBL). Other measures included fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood AÎČ biomarkers, and cognition and function. Results: Forty subjects completed the first 12-month double-blind phase (placebo = 15, PBT2 = 25), and 27 subjects completed the 12-month open label extension phase (placebo = 11, PBT2 = 16). Overall, PTB2 250 mg/day was safe and well tolerated. The mean PiB-PET SUVR at baseline was 2.51 ± 0.59. After adjusting for baseline SUVR, in the double-blind phase, the placebo group showed a nonsignificant decline in PiB-PET SUVR, whereas the PBT2 group declined significantly (P = .048). Subjects who did not enter or complete the extension study had a significantly higher 12-month AÎČ-PET SUVR (2.68 ± 0.55) compared with those who completed (2.29 ± 0.48). Both groups differed significantly from the rate of change over 12 months in the AIBL control group. In the open label 12-month extension study, the PiB-SUVR stabilized. There were no significant differences between PBT2 and controls in fluorodeoxyglucose-positron emission tomography, magnetic resonance imaging volumetrics, blood AÎČ biomarkers, or cognition/function over the course of the double-blind phase. Discussion: There was no significant difference between PBT2 and controls at 12 months, likely due to the large individual variances over a relatively small number of subjects. PBT2 was associated with a significant 3% PiB-PET SUVR decline in the double-blind phase and a stabilization of SUVR in the open-label phase. From this exploratory study, we have learned that the entry criterion of SUVR should have been set at â„ 1.5 and  90 per arm) over a longer period (18 months or more). Further evaluation of higher doses of PBT2 in earlier stages of AD is warranted. Trial Registration: ACTRN 12611001008910 and ACTRN 12613000777796
Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration: A united approach
Item does not contain fulltextCerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE)
The Amsterdam Declaration on Fungal Nomenclature
The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19â20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented
- âŠ