73 research outputs found

    Filter Bank Design for Subband Adaptive Beamforming and Application to Speech Recognition

    Get PDF
    \begin{abstract} We present a new filter bank design method for subband adaptive beamforming. Filter bank design for adaptive filtering poses many problems not encountered in more traditional applications such as subband coding of speech or music. The popular class of perfect reconstruction filter banks is not well-suited for applications involving adaptive filtering because perfect reconstruction is achieved through alias cancellation, which functions correctly only if the outputs of individual subbands are \emph{not} subject to arbitrary magnitude scaling and phase shifts. In this work, we design analysis and synthesis prototypes for modulated filter banks so as to minimize each aliasing term individually. We then show that the \emph{total response error} can be driven to zero by constraining the analysis and synthesis prototypes to be \emph{Nyquist(MM)} filters. We show that the proposed filter banks are more robust for aliasing caused by adaptive beamforming than conventional methods. Furthermore, we demonstrate the effectiveness of our design technique through a set of automatic speech recognition experiments on the multi-channel, far-field speech data from the \emph{PASCAL Speech Separation Challenge}. In our system, speech signals are first transformed into the subband domain with the proposed filter banks, and thereafter the subband components are processed with a beamforming algorithm. Following beamforming, post-filtering and binary masking are performed to further enhance the speech by removing residual noise and undesired speech. The experimental results prove that our beamforming system with the proposed filter banks achieves the best recognition performance, a 39.6\% word error rate (WER), with half the amount of computation of that of the conventional filter banks while the perfect reconstruction filter banks provided a 44.4\% WER. \end{abstract

    Monitoring Climate Impacts on Annual Forage Production across U.S. Semi-Arid Grasslands

    Get PDF
    The ecosystem performance approach, used in a previously published case study focusing on the Nebraska Sandhills, proved to minimize impacts of non-climatic factors (e.g., overgrazing, fire, pests) on the remotely-sensed signal of seasonal vegetation greenness resulting in a better attribution of its changes to climate variability. The current study validates the applicability of this approach for assessment of seasonal and interannual climate impacts on forage production in the western United States semi-arid grasslands. Using a piecewise regression tree model, we developed the Expected Ecosystem Performance (EEP), a proxy for annual forage production that reflects climatic influences while minimizing impacts of management and disturbances. The EEP model establishes relations between seasonal climate, site-specific growth potential, and long-term growth variability to capture changes in the growing season greenness measured via a time-integrated Normalized Difference Vegetation Index (NDVI) observed using a Moderate Resolution Imaging Spectroradiometer (MODIS). The resulting 19 years of EEP were converted to expected biomass (EB, kg ha-1 year-1) using a newly-developed relation with the Soil Survey Geographic Database range production data (R2= 0.7). Results were compared to ground-observed biomass datasets collected by the U.S. Department of Agriculture and University of Nebraska-Lincoln (R2 = 0.67). This study illustrated that this approach is transferable to other semi-arid and arid grasslands and can be used for creating timely, post-season forage production assessments. When combined with seasonal climate predictions, it can provide within-season estimates of annual forage production that can serve as a basis for more informed adaptive decision making by livestock producers and land managers

    The more concentrated, the better represented? The geographical concentration of immigrants and their descriptive representation in the German mixed-member system

    Get PDF
    <p>Supplemental material, IPS796263_supplemental_data for The more concentrated, the better represented? The geographical concentration of immigrants and their descriptive representation in the German mixed-member system by Lucas Geese and Diana Schacht in International Political Science Review</p

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore