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Abstract. e present a new filter bank design method for subband adaptive beamforming. Filter
bank design for adaptive filtering poses many problems not encountered in more traditional ap-
plications such as subband coding of speech or music. The popular class of perfect reconstruction
filter banks is not well-suited for applications involving adaptive filtering because perfect recon-
struction is achieved through alias cancellation, which functions correctly only if the outputs of
individual subbands are not subject to arbitrary magnitude scaling and phase shifts.

In this work, we design analysis and synthesis prototypes for modulated filter banks so as to
minimize each aliasing term individually. We then show that the total response error can be
driven to zero by constraining the analysis and synthesis prototypes to be Nyquist(M) filters.

We show that the proposed filter banks are more robust for aliasing caused by adaptive beam-
forming than conventional methods. Furthermore, we demonstrate the effectiveness of our design
technique through a set of automatic speech recognition experiments on the multi-channel, far-
field speech data from the PASCAL Speech Separation Challenge. In our system, speech signals
are first transformed into the subband domain with the proposed filter banks, and thereafter
the subband components are processed with a beamforming algorithm. Following beamforming,
post-filtering and binary masking are performed to further enhance the speech by removing resid-
ual noise and undesired speech. The experimental results prove that our beamforming system
with the proposed filter banks achieves the best recognition performance, a 39.6% word error rate
(WER), with half the amount of computation of that of the conventional filter banks while the
perfect reconstruction filter banks provided a 44.4% WER.
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1 Introduction

There has been great interest in subband adaptive processing applications such as acoustic echo
cancellation [1, 2, 3], blind signal separation [4] and beamforming [5, 6]. Subband adaptive filtering
can reduce the computational complexity associated with time domain adaptive filters and improve
the convergence property in estimating filter coefficients [7].

However, the filter bank design for subband adaptive filtering poses problems not seen in traditional
applications such as speech coding [5][8]. de Haan showed in [8] that the perfect reconstruction (PR)
filter banks were not suitable for beamforming applications because PR is achieved through aliasing
cancellation [9, §5], which can reconstruct an input signal correctly only if the outputs of the individual
subbands are not subject to arbitrary magnitude scaling and phase shifts. In [5], de Haan et al.
proposed a method to design analysis and synthesis prototypes for modulated filter banks so as to
minimize the weighted combination of the response error and aliasing distortion. The filter banks
proposed in [5] are referred to as de Haan filter banks here.

In this work, we show that the response error defined in [5] can be driven to null by constraining
the analysis and synthesis prototypes to be Nyquist(M) filters [9, §4.6.1]. Thereafter, the minimization
of the aliasing distortions is shown to reduce to the solution of an eigenvalue problem in the case of
the analysis prototype, and to the solution of a set of linear equations in the case of the synthesis
prototype. We also discuss the performance limitation of the filter banks due to numerical problems,
and propose an alternate solution for a special case for which we can eliminate not only the total
response error but also residual aliasing distortion completely.

Those modulated filter banks are applied to a speech separation system that extracts a target
speech signal. In our system, discrete-time signals are first transformed into the subband domain
with our filter banks, and the subband components are then processed with the minimum mutual
information (MMI) beamforming algorithm which estimates the active weight vectors so that the
mutual information of both beamformer outputs is minimized [6]. Following MMI beamforming, a
variant of the Wiener post-filter as well as a binary mask are applied to further reduce the residual
noise.

We show the effectiveness of our filter banks through speech recognition experiments on the far-field
speech data from the PASCAL Speech Separation Challenge. The data were recorded in a reverberant
room, not artificially convoluted with measured room impulse responses. This implies that the position
of the speaker’s head as well as the speaking volume vary constantly.

The balance of this work is organized as follows. In Section 2 we review the definition of the uniform
DFT filter bank and introduce the notation to be used throughout this work. Most importantly, we
derive expressions for the total response error and residual aliasing distortion that will subsequently
be minimized. In Section 3, we consider the design of suitable analysis and synthesis prototypes for
the modulated filter banks discussed in Section 2. In particular, Sections 3.1 and 3.2 briefly present
the prototypes design methods of [5], and then show how slight modifications of those techniques
can produce prototypes with zero response error and the minimal aliasing distortion. In Section 3.3,
we also present an alternate method which provides null residual aliasing distortion as well as zero
total response error in a special case. In Section 4, we analyze our filter banks and compare the total
response errors and aliasing distortions obtained with them to those obtained with the de Haan filter
bank design. Section 5 describes beamforming techniques to which our filter banks are to be applied.
In Section 6, we first describe the configuration of the automatic speech recognition system used in
our experiments, and then compare our design techniques with that originally proposed in [5] as well
as the popular paraunitary PR design through a set of speech recognition experiments on the multi-
channel, far-field speech data from the PASCAL Speech Separation Challenge. Finally, in Section 7
we present our conclusions and plans for future work.
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Figure 1: Schematic of a modulated subband analysis-synthesis filter bank.

2 Modulated Filter Banks

Figure 1 shows a schematic of a modulated filter bank with M subbands and a decimation factor of
D. The impulse responses hm[n] of the analysis filters are obtained by modulating a single prototype
h[n] according to

hm[n] = h[n]W−mn
M ↔ Hm(z) = H(zWm

M ), (1)

where WM = e−j2π/M denotes the M -th root of unity. In the popular cosine modulated filter banks [9,
§8], the impulse responses gm[n] of the synthesis filters are time-reversed versions of the analysis filters:

gm[n] = hm[Lh − n] (2)

where Lh = mM is the total length of the filter bank prototype for some positive integer m. Provided
the initial prototype h[n] possesses a paraunitary property [9, §6.1.1], the design (2) provides perfect
reconstruction (PR). As noted in [5][8], however, PR is achieved through alias cancellation, which
functions properly only when the outputs of the individual subbands are not subject to arbitrary
magnitude scalings and phase shifts. Hence, the PR design is not suitable for beamforming and
adaptive filtering.

Following [5], we will define a separate prototype g[n] for the synthesis bank, and stipulate that
the individual prototypes gm[n] are related to g[n] according to

gm[n] = g[n]W−mn
M ↔ Gm(z) = G(zWm

M ). (3)

The outputs Vm(z) of the analysis filters can be expressed as

Vm(z) = Hm(z)X(z) = H(zWm
M )X(z). (4)

Then the decimators expand the spectrums [9, §4.2] according to

Xm(z) =
1

D

D−1
∑

d=0

Vm(z1/DW d
D)

=
1

D

D−1
∑

d=0

H(z1/DWm
MW d

D)X(z1/DW d
D). (5)

The last equation indicates that Xm(z) consists of the sum of a stretched output of the mth filter
bank and D − 1 aliasing terms.

At this point, the “fixed” subband weights Fm can be applied to the decimated signals to achieve
the desired adaptive filtering effect:

Ym(z) = FmXm(z). (6)



4 IDIAP–RR 08-02

The expanders then compress the signals Ym(z) according to

Um(z) = Ym(zD) =
1

D
Fm

D−1
∑

d=0

H(zWm
MW d

D)X(zW d
D). (7)

In the last step, the signals Um(z) are processed by the synthesis filters Gm(z) in order to suppress the
spectral images created by expanders, and the outputs of the synthesis filters are summed together
according to

Y (z) =
M−1
∑

m=0

Um(z)Gm(z). (8)

The final relation between the input and output signals can be expressed as

Y (z) =
1

D

D−1
∑

d=0

X(zW d
D)

M−1
∑

m=0

Fm H(zWm
MW d

D)G(zWm
M ). (9)

Upon defining

Am,d(z) =
1

D
Fm H(zWm

MW d
D)G(zWm

M ) (10)

the output relation (9) can be written more conveniently as

Y (z) =

D−1
∑

d=0

Ad(z)X(zW d
D) (11)

where

Ad(z) =

M−1
∑

m=0

Am,d(z). (12)

The transfer function A0(z) produces the desired signal, while the remaining transfer functions Ad(z)
for d = 1, . . . ,D − 1 give rise to the residual aliasing distortion in the output signal.

3 Prototype Design

Here we summarize the design methods for the analysis and synthesis prototypes proposed by de Haan
et al. [5]. We also discuss how these methods can be modified so as to provide zero total response
error while minimizing the residual aliasing distortion.

3.1 Analysis Prototype Design

In order to design the analysis prototype h[n], de Haan et al. [5] define the objective function

ǫh = αh + βh (13)

where the passband response error is

αh =
1

2ωp

∫ ωp

−ωp

∣

∣H(ejω) − Hd(ejω)
∣

∣

2
dω, (14)

and the inband-aliasing distortion is given by

βh =
1

2π

∫ π

−π

D−1
∑

d=1

∣

∣

∣
H(ejω/DW d

D)
∣

∣

∣

2

dω. (15)
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In (14) the desired filter bank response Hd(ejω) is assumed to correspond to a pure delay of τH samples,
such that

Hd(ejω) = e−jωτH . (16)

Defining

h =
[

h[0] h[1] · · ·h[Lh − 1]
]T

, (17)

φh(z) =
[

1 z−1 · · · z−(Lh−1)
]T

, (18)

they then demonstrate that the passband response error can be expressed as

αh = hT Ah − 2hT b + 1, (19)

where

A = 1
2ωp

∫ ωp

−ωp
φh(ejω)φH

h (ejω)dω, (20)

b = 1
2ωp

∫ ωp

−ωp
Re

{

ejωτH φh(ejω)
}

dω. (21)

Based on (20–21), the components of A and b can be expressed as

Ai,j =
sin(ωp(j − i))

ωp(j − i)
, (22)

bi =
sin(ωp(τH − i))

ωp(τH − i)
. (23)

The inband-aliasing term (15) can be expressed as

βh =
1

2π

D−1
∑

d=1

hT

[
∫ π

−π

φh
(

ej ω
D W d

D

)

φH
h

(

ej ω
D W d

D

)

dω

]

h. (24)

The last equation can be rewritten as
βh = hT Ch, (25)

where

C =
1

2π

D−1
∑

d=1

∫ π

−π

φh

(

ej ω
D W d

D

)

φh
H

(

ej ω
D W d

D

)

dω. (26)

The components of C can then be expressed as

Ci,j =
ϕ[j − i] sin

(

π(j−i)
D

)

π(j − i)
(27)

where

ϕ[n] = D
∞
∑

k=−∞

δ[n − kD] − 1.

Combining all terms above, de Haan et al. then seek to minimize the objective function

ǫh = αh + βh

= hT (A + C)h − 2hT b + 1. (28)

Thus, the prototype h proposed in [5] must satisfy

(A + C)h = b. (29)
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Polyphase Components

Any given filter function H(z) can be decomposed as

H(z) =

M−1
∑

l=0

z−l El(z
M ), (30)

where

El(z) ,

∞
∑

n=−∞

el(n) z−n (31)

and

el[n] , h(Mn + l), for all 0 ≤ l ≤ M − 1. (32)

Equation (30) is known as the Type 1 polyphase representation of H(z) and the set {El(z)} is, by
definition, composed of the Type 1 polyphase components of H(z); see [9, §4.3]. The Type 1 polyphase
components are very useful for the efficient implementation of a modulated analysis filter bank. The
implementation of a modulated synthesis bank typically relies on the Type 2 polyphase representation:

H(z) =
M−1
∑

l=0

z−(M−1−l) Rl(z
M ), (33)

where the set of Type 2 polyphase components {Rl(z)} are obtained from permutation of the Type 1
polyphase components,

Rl(z) = EM−1−l(z). (34)

Nyquist(M) Filters

Suppose that a filter function H(z) has been represented in Type 1 polyphase form, and the 0-th
polyphase component is constant, such that

H(z) = c + z−1 E1(z
M ) + · · · + z−(M−1) EM−1(z

M ). (35)

A filter with this property is said to be a Nyquist(M) or M -th band filter [9, §4.6.1], and its impulse
response clearly satisfies

h[Mn] =

{

c, n = 0

0, otherwise
(36)

The definition in (35) can be generalized by assuming that

H(z) = cz−mdM + z−1 E1(z
M ) + · · ·

+z−(M−1) EM−1(z
M ).

(37)

The impulse response of H(z) must then satisfy

h[Mn] =

{

c, n = md

0, otherwise
(38)

In the Appendix, it is shown that if H(z) satisfies (35) with c = 1/M , then

M−1
∑

k=0

H(zW k) = Mc = 1, (39)
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where W = e−j2π/M . Hence, all M uniformly shifted versions of H(ejω) add up to a constant.
Similarly, if H(z) satisfies (37), then

M−1
∑

k=0

H(zW k) = z−mdM , (40)

in which case, in the absence of decimation, the output of the analysis filter bank would be equivalent
to the input delayed by mdM samples.

Notice that (40) represents a much stronger condition than that aimed at by the minimization
of (14), in that (40) implies the response error will vanish, not just for the pass band of a single
filter, but for the entire working spectrum, including the transition bands between the passbands of
adjacent filters. Hence, we can replace the term αh in the optimization criterion (13) with a constraint
of the form (38), then minimize the inband-aliasing distortion (24) subject to this constraint. The
inband-aliasing distortion reduces to (25), the optimization of which clearly admits the trivial solution
h = 0. To exclude this solution, we impose the additional constraint

hT h = 1, (41)

which is readily achieved through the method of undetermined Lagrange multipliers. We posit the
modified objective function

f(h) = hT Ch + λ(hT h − 1) (42)

where λ is a Lagrange multiplier. Upon setting

∇f(h) = 0,

we find

Ch + λh = 0,

which implies

Ch = −λh. (43)

Hence, h is clearly an eigenvector of C. Moreover, in order to ensure h minimizes (25), it must be that
eigenvector associated with the smallest eigenvalue of C. Note that, in order to ensure that h satisfies
either (36) or (38), we must delete those rows and columns of C corresponding to the components of h
that are identically zero. We then solve the eigenvalue problem (43) for the remaining components of
h, and finally reassemble the complete prototype by appropriately concatenating the zero and non-zero
components. This is similar to the construction of the eigenfilter described in [9, §4.6.1].

3.2 Synthesis Prototype Design

In order to design the synthesis prototype, de Haan et al. [5] take as an objective function

ǫg(h) = γg(h) + δg(h) (44)

where the total response error is defined as

γg(h) =
1

2π

∫ π

−π

∣

∣A0(e
jω) − e−jωτT

∣

∣

2
dω, (45)

the total analysis-synthesis filter bank delay is denoted as τT , and the residual aliasing distortion is

δg(h) =
1

2π

D−1
∑

d=1

M−1
∑

m=0

∫ π

−π

∣

∣Am,d(e
jω)

∣

∣

2
dω. (46)
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Through manipulations similar to those used in deriving the quadratic objective criterion for the
analysis filter bank, it can be shown that

γg(h) = gT Eg − 2gT f + 1. (47)

The components of E and f are given by

Ei,j =
M2

D2

∞
∑

k=−∞

h∗[kM − i]h[kM − j] (48)

fi =
M

πD
h[τT − i]. (49)

Similarly, the quadratic form for the residual aliasing distortion is

δg(h) = gT Pg, (50)

where the components of P are given by

Pi,j =
M

D2

∞
∑

l=−∞

h∗[l + j]h[l + i]ϕ[i − j],

ϕ[n] = D

∞
∑

k=−∞

δ[n − kD] − 1.

De Haan et al. [5] introduced a weighting factor v to emphasize either the total response error (for
0 < v < 1) or residual aliasing distortion (for v > 1):

ǫg(h) = γg(h) + vδg(h) (51)

= gT (E + vP)g − 2gT f + 1. (52)

Hence, their synthesis prototype g must satisfy

(E + vP)g = f . (53)

Nyquist(M) Constraint

As with the analysis prototype, we can now impose the Nyquist(M) constraint on the complete
analysis-synthesis prototype (h ∗ g)[n] such that

(h ∗ g)[Mn] =

{

c, n = md,

0, otherwise,
(54)

in which case the total response error (45) must be identically zero. Subject to this constraint, we
minimize the residual aliasing distortion (52). Satisfaction of (54) clearly reduces to a set of linear
constraints of the form

gT h−m+1 = 0,

...

gT h0 = c, (55)

...

gT hm−1 = 0,
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where hk is obtained by shifting a time-reversed version of h by kM samples and padding with zeros
as needed. Equation (55) can be rewritten as

gT H = cT , (56)

where

H = [h−m+1, . . . ,h0, . . . ,hm−1], (57)

cT = [0, . . . , c, . . . , 0]. (58)

For the constrained minimization problem at hand, we again draw upon the method of undeter-
mined Lagrange multipliers and formulate the objective function

f(g) = gT Pg + (gT H − cT )λ, (59)

where λ = [λ−m+1, . . . , λ0, . . . , λm+1]
T . Setting

∇f(g) = 2Pg + Hλ = 0, (60)

we find

g = −
1

2
P−1Hλ. (61)

The values of the multipliers {λk} can be determined by substituting (61) into (56) and solving

λ = −2
(

HT P−1H
)

−1

c. (62)

By substituting (62) into (61), we finally obtain a synthesis prototype

g = P−1H
(

HT P−1H
)

−1

c. (63)

3.3 Alternate method for a special case

The optimal prototypes can be obtained by solving (43) and (63) if the matrices C and P are not
singular. When those matrices are ill-conditioned, however, a different solution is required.

Theoretically speaking, the matrices C and P should not be singular because they are positive
definite. From (15) and (25), the matrix C clearly satisfies

hT Ch ≥ 0. (64)

With (46) and (50), we also find
gT Pg ≥ 0. (65)

It is obvious from (64) and (65) that the matrices C and P are positive definite unless the frequency
responses of the analysis and synthesis prototypes are identically zero in the stopbands. In our cases,
those matrices should be positive definite and accordingly invertible. We have observed, however, that
as energy in the stopbands of the analysis and synthesis prototypes approaches zero, the matrices C
and P became computationally singular due to the limitations of floating point accuracy. This typically
occurs when the decimation factor D is small compared to the length of the prototype filter Lh. In
those cases when C singular, we can denote its its nullspace as Cnull, which consists of those column
vectors q ∈ Rn : Cq = 0. The singular value decomposition (SVD) [10] can be used in order obtain
a basis for the nullspace of C. Under the SVD, C is decomposed into

C = UΣVT . (66)
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Figure 2: Frequency response of analysis filter bank prototypes with M = 8 subbands, decimation
factor D = 4, and filter length Lh = 16.

The bases of the null space of C can be obtained from the columns of V, which correspond to singular
values below a threshold. In this work, the threshold σ is chosen such that

σ = max(m,n) × max(σi) × ǫ

where m and n are respectively the number of rows and columns in C, the ith singular value is denoted
by σi, and ǫ floating point accuracy of the machine used for SVD computations.

Obviously, the inband-aliasing distortion can be driven to null by an analysis prototype which
is represented as a linear combination of the basis vectors of the nullspace h = Cnull x. The free
parameters x are determined so as to minimize the passband response error (19), the solution of
which can be expressed as

h = Cnull(C
T
nullACnull)

−1CT
nullb, (67)

where rows and columns of Cnull, A and b, corresponding to the components of h that are identically
zero, are deleted, and h is reassembled so as to keep the Nyquist(M) constraint.

For the synthesis prototype design, we can also eliminate residual aliasing distortion (50) in a
similar manner. Denoting the nullspace of P as Pnull, we can express the synthesis prototype as
g = Pnully. Then by substituting into (56), we have

y = (HT Pnull)
+c (68)

where (·)
+

indicates the peseudoinverse of (·). If the number of column vectors of Pnull is greater than
or equal to 2m − 1, we can find a synthesis prototype g = Pnully with zero total response error and
residual aliasing distortion. We finally express the synthesis prototype with basis of the nullspace as

g = Pnull(H
T Pnull)

+c. (69)

In practice, as the inband-aliasing distortion is very small, P becomes practically singular. In that case,
with the method described here, we can achieve zero inband-aliasing and residual aliasing distortions.

3.4 Design Examples

Energy in the stopband of the filters results in aliasing. The stopband attenuation is one of the impor-
tant factors to indicate how good a prototype is. Figures 2, 3 and 4 show the frequency responses of
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Figure 3: Frequency response of synthesis filter bank prototypes with M = 8 subbands , decimation
factor D = 4, and filter length Lh = 16.
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Figure 4: Frequency response of proposed composite analysis-synthesis filter bank prototypes with
M = 8 subbands, decimation factor D = 4 and filter length Lh = 16.
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Figure 5: Inband aliasing distortion βh for the number of subbands M . The filter length is set to
Lh = 2M .

the analysis, synthesis and composite analysis-synthesis prototypes respectively. Each figure presents
the frequency responses of a uniform DFT filter bank using the PR prototype design (PR FB), de
Haan prototype design (de Haan FB), and the proposed prototype design (Nyquist(M) FB), where the
number of subbands is M = 8 and the decimation factor is D = 4. From those figures, we can readily
see that the filter banks designed by the proposed algorithm provide the highest suppression in the
stopband, followed by de Haan prototype and then by the PR filter prototype. Again, in the case that
arbitrary magnitude scalings and phase shifts are applied to the subband samples, the PR property
is not retained. Hence, it is important to minimize the stopband energy of each filter individually.

4 Evaluation of Errors in Filter Prototypes

From the inband and residual aliasing distortions, we can predict the robustness of filter banks for
aliasing caused by arbitrary magnitude scaling and phase shifts [8].

A relationship between the aliasing distortions and the number of subbands might be helpful for
designing a beamforming system. Figures 5 and 6 show the inband and residual aliasing distortions
against the number of subbands, where the decimation factor is set to D = M/2.

Inasmuch as decreasing the inband-aliasing distortion conduces to smaller residual aliasing distor-
tion, it is important to minimize the inband-aliasing distortion. As shown in Figure 5, the proposed
Nyquist(M) filter prototype provides a smaller inband-aliasing distortion than the prototype designed
by de Haan’s algorithm, because the proposed design algorithm minimizes the inband-aliasing dis-
tortion directly while de Haan’s minimize a linear combination of the passband response error and
inband-aliasing distortion.

We can see from Figure 6 that the proposed algorithm can keep the residual aliasing distortion much
lower than the conventional method. It is also clear from Figure 6 that the residual aliasing distortion
of the Nyquist(M) filter banks monotonically decreases with respect to the number of subbands M
while those of de Haan filter banks are rather invariant to it. De Haan’s algorithm minimizes the
linear combination of the total response error and residual aliasing distortion, equation (51). Hence,
the additional term of the total response error γg(h) prevents the residual aliasing error δg(h) from
being suppressed. In contrast, our design technique minimizes the residual aliasing distortion only
while keeping zero total response error. As a result, the residual aliasing distortion of the Nyquist(M)
filter simply decreases as M increases, due mostly to the increase of the number of free parameters
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Figure 6: Residual aliasing distortion ǫg(h) for the number of subbands M . The filter length is set to
Lh = 2M .

with respect to the number of constraints.

The aliasing errors can be also reduced by decreasing the decimation factor D although it increases
the computational cost associated with adaptive processing. Figure 7 presents the inband-aliasing
distortions for decimation factor D with de Haan’s and our filter banks, where each line corresponds
to a number of subbands, M = 256 or 512, and the filter length is set to 2M . It is clear from Figure 7
that the proposed method suppresses the inband-aliasing distortion more than de Haan’s algorithm
in most cases.

In calculating the inband-aliasing distortion for the decimation factor, we observed that the matrix
C was singular when the number of subbands and the decimation factor were set to M = 256 and D
≤ 32 or M = 512 and D ≤ 64. In such cases, we could find the nullspace and then use the alternate
solution for the design of the analysis prototype instead of the eigen decomposition solution.

Figure 8 shows the residual aliasing distortion calculated with (50) in the same conditions as
Figure 7. In Figure 8, de Haan filter banks are calculated with weighting factor v = 100.0. It is
clear from Figure 8 that the smallest residual aliasing distortions are achieved with the proposed
Nyquist(M) filter banks. We note that when C was singular, P was also singular and the synthesis
prototypes were calculated with the bases of the nullspace of the matrix P.

Figure 9 shows the residual aliasing distortions of the Nyquist(M) filter banks with the alternate
method and without it, where the number of subbands is set to 512. As a reference, the residual
aliasing distortion of the de Haan filter bank is also shown in Figure 9. In the case that the filterbanks
whose decimation factor D is set to less than 128 are entirely designed based on (43) and (63), the
obtained solutions are instable due to the singular matrices. It is clear from Figure 9 that the residual
aliasing distortion does not decrease monotonically but increases when the matrices C and P are
singular. The nullspace based method can suppress the aliasing distortion even if these matrices are
singular.

It could be important to know when the matrices C and P are ill-conditioned and computationally
singular. We show common logarithms of condition numbers of those matrices in Figure 10. It is
generally considered that a matrix is ill-conditioned when the condition number is too big, i.e. close
to a reciprocal of floating point accuracy which is described as the threshold in Figure 10. As indicated
in Figure 10, the smaller the decimation factor is set, the larger the condition number becomes. The
condition numbers reach the threshold in the case of decimation factor D ≤ 64 in Figure 10.

One might intuitively consider that the residual aliasing distortion would decrease for the decima-
tion factor monotonically. However, Figure 8 shows that each curve of the residual aliasing distortion
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Figure 7: Inband-aliasing distortion βh for decimation factor D. The number of subbands is M = 256
or M = 512 and the filter length is set to Lh = 2M .

Figure 8: Residual aliasing distortion ǫg(h) for decimation factor D. The number of subbands is M=
256 or M = 512 and the filter length is set to Lh = 2M .
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Figure 9: Comparison of the Nyquist(M) filter banks designed with the alternate method and without
it. The number of subbands is M = 512 and the filter length is set to Lh = 2M .

Figure 10: The common logarithm of the condition number of C and P for decimation factor D. The
number of subbands is M = 512 and the filter length is set to Lh = 2M .
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Figure 11: Residual aliasing distortion ǫg(h) for weighting factor v. The number of subbands is M =
512 and the filter length is Lh = 2M .

of de Haan’s filter bank has a peak at D = M/2.
In order to look further into the reason, we calculated the residual aliasing distortions with D

= 256 and D = 512. Figure 11 shows the residual aliasing distortions for weighting factor v. From
Figure 11 it is seen that the residual aliasing distortion of D = 512 is smaller than that of D = 256 in
the case of v ≥ 100.0.

We also show the total response errors for weighting factor v in Figure 12. It is clear from Figure 11
and Figure 12 that the residual aliasing distortion can be reduced by setting a large weighting factor
v at the expense of the total response error. Notice that the total response error is zero in the
Nyquist(M) filter bank.

Since the Nyquist(M) filter banks achieve zero total response error and their residual aliasing
distortion can be driven down below machine precision through a suitable selection of the decimation
factor, it could be that such filter banks provide reconstruction that is “perfect” up to machine
precision . In order to investigate this possibility, we calculated the mean square (MS) error ǫMS

between the input x[n] and output y[n] of the filter bank normalized by the MS amplitude of the
input, which can be expressed as

ǫMS = 10 log10

∑N−1
n=0 (x[n] − y[n])

2

∑N−1
n=0 x2[n]

.

Figure 13 shows the MS errors of the PR, Nyquist(M), de Haan filter banks for the decimation factor.
Of course, the PR filter bank can reconstruct an exact input signal through the aliasing cancellation.
Therefore, as shown in Figure 13, the PR filter bank provides the smallest MS error. The error of the
PR filter bank is mainly because of the round-off error. We can also see from Figure 13 that the MS
errors of the Nyquist(M) filter banks with D ≤ 128 are negligibly small. The total response error of
de Haan’s filter banks can be decreased by setting the small weighting factor v. However, even if v is
set to 0.01, as indicated in Figure 13, its MS error is the highest of the three filter banks.

Amplification of a signal would make no difference for automatic speech recognition (ASR), given
that ASR front-ends all apply gain control. Therefore we also consider the normalized MS error which
is invariant to such a scaling can be expressed as

ǫNorm MS = 10 log10

∑N−1
n=0

(

x[n] − y[n]

√

PN−1

n=0
x2[n]

PN−1

n=0
y2[n]

)2

∑N−1
n=0 x2[n]

.
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Figure 12: Total response error γg(h) for weighting factor v. The number of subbands is M = 512
and the filter length is Lh = 2M .
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Figure 15: Schematic of generalized sidelobe cancelling (GSC) beamformers for each active source.

In this measure, the output signal is scaled so that its MS amplitude is equivalent to that of the
input. Figure 14 shows the normalized MS errors of the PR, Nyquist(M), de Haan filter banks for the
decimation factor. Just as in Figure 13, the de Haan filter bank provides the worst MS error, followed
by the Nyquist(M) filter bank, then by the PR filter bank. It can also seen from Figure 14 that the
weighting factor v of de Haan’s filter bank has no impact on the normalized MS error. This would
seem to suggest that it is better to set the weighting factor v to a large value for ASR.

5 MMI Subband Beamforming with Post-filtering

Minimum mutual information (MMI) beamforming can separate mixed noisy speech without the signal
cancellation problems seen in conventional techniques [6]. We first transform speech signals into the
subband domain with the filter banks, and then MMI beamforming is performed in the subband
domain in order to extract a target signal. Consider a subband beamformer in GSC configuration [11,
§6.7.3]. Assuming there are two such beamformers aimed at different sources, as shown in Fig. 15,
the output of the ith beamformer for a given subband can be expressed as,

Yi = (wq,i − Biwa,i)
H

X (70)

where wq,i is the quiescent weight vector for the ith source, Bi is the blocking matrix, wa,i is the
active weight vector, and X is the input subband snapshot vector, which is common to both sources.
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In keeping with the GSC formalism, wq,i is chosen to give unity gain in the desired look direction [11,
§6.7.3]; i.e., to satisfy a distortionless constraint. The blocking matrix Bi is chosen to be orthogonal
to wq,i, such that

BH
i wq,i = 0.

This orthogonality implies that the distortionless constraint will be satisfied for any wa,i. While the
active weight vector wa,i is typically chosen to maximize the signal-to-noise ratio (SNR), the MMI
beamforming algorithm finds the wa,i that minimizes the mutual information I(Y1, Y2). In this work,
we assume that subband snapshots are Gaussian-distributed. Minimizing the mutual information
criterion yields a weight vector wa,i capable of suppressing interference that leaks through the sidelobes
without the signal cancellation problems encountered in conventional beamforming.

In addition to MMI beamforming, we perform Zelinski post-filtering [12] [13] and binary mask-
ing [14].

The Zelinski post-filter can be viewed as the extension of the single-channel Wiener filter to the
multi-channel case. The frequency-dependent spectral weighting for the ith source can be expressed
as

wz,i =

2
M(M−1)

∣

∣

∣

∑M−1
k=1

∑M
l=k+1 φ̂kl

∣

∣

∣

1
M

∑M
k=1 φ̂kk

(71)

where φ̂kk is the auto-spectral density of the time-aligned input at microphone k and φ̂kl is the cross-
spectral density (CSD) at microphones k and l. The estimation of a desired signal can be improved
by averaging the CSDs.

In binary masking, we only use beamformer outputs with maximum power and set the other
outputs to zero. The frequency-dependent binary masking weights wb,i can be written as:

wb,i =

{

1, if i == argmax |Yp,i|
0, otherwise

(72)

where Yp,i is the frequency-dependent output of the Zelinski post-filter for the ith source. This
masking can remove residual interference speech, but it also introduces audible artifacts into the
desired speech.

6 Automatic Speech Recognition Experiments with Subband
Beamforming

6.1 Configuration of speech recognition system

We performed far-field automatic speech recognition (ASR) experiments on development data from
the PASCAL Speech Separation Challenge (SSC); see Lincoln et al. [15] for a description of the data
collection apparatus. The data set contains recordings of five pairs of speakers where each pair of
speakers reads approximately 30 sentences taken from the 5,000 word vocabulary Wall Street Journal
(WSJ) task. There are a total of 43.9 minutes of speech in the development set and a total of
11,598 word tokens in the reference transcriptions. The data from two simultaneously active speakers
were recorded with two circular, eight-channel microphone arrays. The diameter of each array was
20 cm, and the sampling rate of the recordings was 16 kHz. This is a challenging task for source
separation algorithms given that the room is reverberant and some recordings include significant
amounts of background noise. In addition, as the recorded data is real and not artificially convolved
with measured room impulse responses, the position of the speaker’s head as well as the speaking
volume constantly vary.

Prior to beamforming, we first estimated the speaker’s position with the Orion source tracking
system [16]. In addition to the speaker’s position, Orion is also capable of determining when each
speaker is active. This information is very useful for speaker adaptation. We can avoid wrong speaker
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adaptation with interference speech when an utterance spoken by one speaker is often much longer
than that spoken by the other.

Based on the average speaker position estimated for each utterance, utterance-dependent active
weight vectors wa,i were estimated for each source i = 1, 2. The active weights for each subband
were initialized to zero for estimation with the Gaussian pdf. The snapshot covariance matrix ΣX was
estimated for an entire utterance. This matrix was all that was required to estimate {wa,i}. Thereafter
iterations of the conjugate gradients algorithm were run on the entire utterance until convergence was
achieved.

After beamforming, the feature extraction of our ASR system was based on cepstral features
estimated with a warped minimum variance distortionless response [17] (MVDR) spectral envelope of
model order 30. Due to the properties of the warped MVDR, neither the Mel-filterbank nor any other
filter bank was needed. The warped MVDR provides an increased resolution in low–frequency regions
relative to the conventional Mel-filterbank. The MVDR also models spectral peaks more accurately
than spectral valleys, which leads to improved robustness in the presence of noise. Front-end analysis
involved extracting 20 cepstral coefficients per frame of speech and performing global cepstral mean
subtraction (CMS) with variance normalization. The final features were obtained by concatenating 15
consecutive frames of cepstral features together, then performing a linear discriminant analysis (LDA)
to obtain a feature of length 42. The LDA transformation was followed by a second global CMS, then
a global semi-tied covariance (STC) transform [18].

The far-field ASR experiments reported here were conducted with the Millennium automatic
speech recognition system. Millenium is based on the Enigma weighted finite-state transducer (WFST)
library, which contains implementations of all standard WFST algorithms, including weighted com-
position, weighted determinization, weight pushing, and minimization [19]. The word trace decoder in
Millenium is implemented along the lines suggested by Saon et al. [20], and is capable of generating
word lattices, which can then be optimized with WFST operations as in [21]; i.e., the raw lattice from
the decoder is projected onto the output side to discard all arc information save for the word identities,
and then compacted through epsilon removal, determinization, and minimization. In addition to the
word trace decoder, Millenium also contains a state trace decoder, which maintains the full alignment
of acoustic features to states during decoding and lattice generation. This state trace decoder is useful
for both speaker adaptation and hidden Markov model (HMM) parameter estimation.

We used 30 hours of American WSJ and the 12 hours of Cambridge WSJ data in order to train a
triphone acoustic model. A description of language modeling technique for dynamically composing the
HC and L ◦G are given in [22]. Acoustic models estimated with two different HMM training schemes
were used for several decoding passes: conventional maximum likelihood (ML) HMM training [23,
§12], and speaker-adapted training under a ML criterion (ML-SAT) [24]. Our baseline system was
fully continuous with 1,743 codebooks and a total of 67,860 Gaussian components. We performed
the four decoding passes on the waveforms obtained with our speech separation systems described
in previous sections. Each pass of decoding used a different acoustic model or speaker adaptation
scheme. Speaker adaptation parameters were estimated using the word lattices generated during the
previous pass, as in [25]. A description of the four decoding passes follows:

1. Decode with the unadapted, conventional ML acoustic model and the shrunken trigram language
model (LM).

2. Estimate vocal tract length normalization (VTLN) [26] parameters and constrained maximum
likelihood linear regression parameters (CMLLR) [27] for each speaker, then redecode with the
conventional ML acoustic model and shrunken trigram LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear regression (MLLR) [28] parameters
for each speaker, then redecode with the conventional model and shrunken trigram LM.

4. Estimate VTLN, CMLLR, MLLR parameters for each speaker, then redecode with the ML-SAT
model and shrunken trigram LM.
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Table 1: Word error rates without post-filtering for every filter bank design algorithm after every
decoding passes.

Filter bank Pass (%WER)
1 2 3 4

FFT 88.5 71.1 58.8 55.5
PR 87.7 65.2 54.0 50.7

de Haan 88.7 68.2 56.1 53.5
Nyquist(M) 88.5 67.0 55.6 52.5

CTM 37.1 24.8 23.0 21.6

Table 2: Word error rates without post-filtering for 2 filter bank design algorithms after every decoding
passes.

Filter bank Parameters Pass (%WER)
M D 1 2 3 4

de Haan 64 32 88.1 69.5 57.9 55.3
256 128 87.3 69.9 58.2 54.4
512 256 88.1 68.8 57.5 53.8
512 128 87.8 68.9 56.6 53.7
512 64 88.7 68.2 56.1 53.5

Nyquist(M) 64 32 88.6 69.5 57.3 55.2
256 128 88.0 70.0 57.1 54.5
512 256 88.0 67.1 55.7 53.4
512 128 88.5 67.0 55.6 52.5
512 64 88.1 68.5 57.1 53.9

6.2 Experiments with MMI beamforming only

We first conducted speech recognition experiments on speech separated with MMI beamforming only
and investigated four methods :

1. Conventional frequency domain processing based on the FFT [29],

2. Cosine modulated filter bank described by [9, §6], which yields PR under optimal conditions,

3. de Haan filter bank [5], and

4. Nyquist(M) filter banks designed by the proposed algorithms.

Table 1 shows the word error rates (WERs) for every filter bank when we set parameters for each
filter bank to obtain the best recognition performance. As a baseline, WERs for speech recorded with
close-talking microphones are shown in Table 1

MMI beamforming with the PR filter banks provided the best recognition performance when
post-filtering was not applied. Although it certainly scaled magnitudes and shifted phases of input
subband components, we didn’t observe strong aliasing noise. Hence, we were led to conclude that
MMI beamforming could estimate active weight vectors while retaining aliasing cancellation. On
the other hand, de Haan filter banks have a total response error which deteriorates the recognition
performance. FFT analysis achieved the worst performance of all the subband processing methods.

We further investigated the recognition performance obtained with de Haan and our proposed
filter banks. Table 2 depicts the WERs when different parameters for filter banks were set. In all
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the experiments, the filter lengths are set to twice the number of subbands, 2×M . It is clear from
Table 2 that the proposed filter banks can provide smaller WERs than those of de Haan filter banks.
These improvements are mainly because the proposed Nyquist(M) filter banks can have zero total
response error. From Table 2, one can also see that as the number of subbands M increases, the WER
decreases. the MMI beamforming algorithm can strengthen a target wave by using its echoes which
are caused by a reflection on a hard surface such as a table [6]. Thus, the larger number of subbands
generally leads to the better performance of speech enhancement of the MMI beamformer. In order
to enhance this advantageous effect, we need to make the length of the analysis filter enough long to
include such reflected waves in the analysis window. This can be done by increasing the number of
subbands.

Contrary to our expectations, Table 2 shows that the WER of the Nyquist(M) filter bank doesn’t
monotonically decrease with the decimation factor although the residual aliasing distortion does. We
suppose that it is because of the numerical instability discussed in Section 4.

6.3 Experiments with MMI beamforming and post-filtering

Finally we did speech recognition experiments on speech enhanced with Zelinski post-filtering and
binary masking after MMI beamforming. Table 3 shows WERs in those experiments. In this case,
the PR property was not kept because of the rapid change of filter weights. We heard the aliasing
distortions when the PR filter banks were used. In contrast, de Haan and the proposed filter banks
could suppress such aliasing noise because those filter banks are designed so as to minimize aliasing
terms individually.

In Table 3, unlike the trend seen in Table 2, the larger number of subbands, which leads a higher
frequency resolution, doesn’t necessarily provide the better recognition performance. We suppose
that is due to inaccurate estimation of noise spectrums in Zelinski-postfiltering. In the case of a high
frequency resolution, many many filter coefficients must be estimated for Zelinski-postfiltering, which
could lead to robustness problems.

One could find correlation between the WER and the residual aliasing distortion by paying atten-
tion to the relationship between Table 3 and Figure 8. Generally, as the residual aliasing distortion is
reduced, the WER becomes smaller. However, this is not always true because there are many other
factors impacting recognition performance. For example, although the residual aliasing distortion
of the Nyquist(M) filter bank vanishes with an increase in the number of subbands, increasing the
number of subbands can lead to robustness problems in estimating the postfiler coefficients; hence,
the WER doesn’t monotonically decrease for an increasing number of subbands.

Table 3 also shows that the systems with de Haan and Nyquist(M) filter banks can reduce the
absolute WER by about 5.0 % compared to those with the PR filter banks. This suggests that the
PR filter bank is less suitable for adaptive processing. It is also clear from Table 3 that the proposed
method achieved a bigger WER reduction than de Haan’s algorithm. In particular, the improvement
of the recognition performance is significant with M = 256. The proposed filter banks achieved the
best recognition performance, WER 39.6 % with the number of subbands M = 512 and decimation
factor D = 128. On the other hand, de Haan filter banks provided the same number with M = 512
and D = 64. Therefore, our method can be thought of as halving the computational cost of that of
de Haan.

7 Conclusions

In this work, we have proposed a new design method for filter banks which is suitable for adaptive
processing. We have thoroughly investigated the properties of the proposed filter banks and compared
them with the filter banks proposed by de Haan through speech recognition experiments on real data
from the PASCAL Speech Separation Challenge. We also proved that minimization of the residual
aliasing errors is more important than the perfect reconstruction property in adaptive processing.
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Table 3: Word error rates with post-filtering for every filter bank design algorithm after every decoding
passes.

Filter bank Parameters Pass (%WER)
M D 1 2 3 4

PR 64 - 83.7 61.5 47.5 44.7
512 - 84.6 60.5 47.6 44.4

de Haan 64 32 82.4 59.2 46.2 43.3
256 128 82.0 60.5 44.7 42.0
512 256 83.9 59.1 43.2 41.3
512 128 81.6 58.9 43.2 40.3
512 64 82.7 57.7 42.7 39.6

Nyquist(M) 64 32 80.7 57.0 44.3 42.0
256 128 81.0 56.2 41.8 39.8
512 256 84.1 58.6 43.4 40.6
512 128 81.8 54.9 42.2 39.6
512 64 81.4 56.5 42.6 40.3

Furthermore, we analyzed how the parameters of filter banks influence the recognition performance
through MMI beamforming and post-filtering.

The proposed method achieved the smallest WER (39.6 %) with half as much computational cost
as de Haan filter banks while the PR filter provided a 44.4 % WER.

In the future, we plan to apply the proposed Nyquist(M) filter banks to different adaptive beam-
forming algorithms. In particular, we will use the proposed filter banks in MMI beamforming with
new super-Gaussian assumptions. We also plan to develop a new subband beamforming algorithm
with the proposed filter banks. In future work, the filter banks described here will be a fundamental
technique in adaptive processing and beamforming.

A Proof of Equations (39–40)

Repeating (35) we have

H(z) = c + z−1 E1(z
M ) + · · · + z−(M−1) EM−1(z

M ) (73)

so that

P

M−1
k=0 H(zW k

M )

=

M−1
X

k=0

[c + (zW k

M )−1E1(z
MW km

M ) + · · ·

+(zW k

M )−(M−1)E1(z
MW km

M )]

=

M−1
X

k=0

[c + W−k

M
· z−1E1(z

M ) + · · ·

+W
−(M−1)k
M

· z−(M−1)EM−1(z
MW km

M )]

= c

M−1
X

k=0

1 + z−1E1(z
M )

M−1
X

k=0

W−k

M
+ · · ·

+z−(M−1)EM−1(z
M )

M−1
X

k=0

W
−k(M−1)
M

(74)
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Now note that
M−1
X

k=0

xm =
1 − xM

1 − x

Hence,
M−1
X

k=0

W−km

M
=

1 − W−mM

M

1 − WM

and as W−mM

M
= 1 for all m = 1, 2, . . ., it is clear that all terms in (74) save for the first vanish. Therefore,

for H(z) in (73) with c = 1/M ,
M−1
X

k=0

H(zW k

M ) = 1

Similarly, if the impulse response associated with H(z) is delayed by mdM samples to obtain a causal system,
then

H(z) = cz−mdM + z−1 E1(z
M ) + · · · + z−(M−1) EM−1(z

M )

and it is readily verified
M−1
X

k=0

H(zW k

M ) = z−mdM

which implies the composite analysis-synthesis filter bank produces a simple delay of the input in the absence
of aliasing
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