295 research outputs found

    Multiple acid pathways in Casco Bay: Implications for the next 25 years (2015 State of the Bay Presentation)

    Get PDF
    https://digitalcommons.usm.maine.edu/cbep-presentations/1020/thumbnail.jp

    Surface Ocean pCO2 Seasonality and Sea-Air CO2 Flux Estimates for the North American East Coast

    Get PDF
    Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010

    Association of Over-The-Counter Pharmaceutical Sales with Influenza-Like-Illnesses to Patient Volume in an Urgent Care Setting

    Get PDF
    We studied the association between OTC pharmaceutical sales and volume of patients with influenza-like-illnesses (ILI) at an urgent care center over one year. OTC pharmaceutical sales explain 36% of the variance in the patient volume, and each standard deviation increase is associated with 4.7 more patient visits to the urgent care center (p<0.0001). Cross-correlation function analysis demonstrated that OTC pharmaceutical sales are significantly associated with patient volume during non-flu season (p<0.0001), but only the sales of cough and cold (p<0.0001) and thermometer (p<0.0001) categories were significant during flu season with a lag of two and one days, respectively. Our study is the first study to demonstrate and measure the relationship between OTC pharmaceutical sales and urgent care center patient volume, and presents strong evidence that OTC sales predict urgent care center patient volume year round. © 2013 Liu et al

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    Counting on commitment; the quality of primary care-led diabetes management in a system with minimal incentives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the present study was to assess the performance of three primary care-led initiatives providing structured care to patients with Type 2 diabetes in Ireland, a country with minimal incentives to promote the quality of care.</p> <p>Methods</p> <p>Data, from three primary care initiatives, were available for 3010 adult patients with Type 2 diabetes. Results were benchmarked against the national guidelines for the management of Type 2 diabetes in the community and results from the National Diabetes Audit (NDA) for England (2008/2009) and the Scottish Diabetes Survey (2009).</p> <p>Results</p> <p>The recording of clinical processes of care was similar to results in the UK however the recording of lifestyle factors was markedly lower. Recording of HbA1c, blood pressure and lipids exceeded 85%. Recording of retinopathy screening (71%) was also comparable to England (77%) and Scotland (90%). Only 63% of patients had smoking status recorded compared to 99% in Scotland while 70% had BMI recorded compared to 89% in England. A similar proportion of patients in this initiative and the UK achieved clinical targets. Thirty-five percent of patients achieved a target HbA1c of < 6.5% (< 48 mmol/mol) compared to 25% in England. Applying the NICE target for blood pressure (≤ 140/80 mmHg), 54% of patients reached this target comparable to 60% in England. Slightly less patients were categorised as obese (> 30 kg/m<sup>2</sup>) in Ireland (50%, n = 1060) compared to Scotland (54%).</p> <p>Conclusions</p> <p>This study has demonstrated what can be achieved by proactive and interested health professionals in the absence of national infrastructure to support high quality diabetes care. The quality of primary care-led diabetes management in the three initiatives studied appears broadly consistent with results from the UK with the exception of recording lifestyle factors. The challenge facing health systems is to establish quality assurance a responsibility for all health care professionals rather than the subject of special interest for a few.</p

    Maine Won\u27t Wait One-Year Progress Report, 2021

    Get PDF
    This document, an “Maine Climate Science Update 2021”, is an interim communication to the Maine Climate Council and the public about the ongoing work of the scientific community and recent events associated with climate change. It is divided into three sections: (1) current events that reflect the acceleration of extreme weather events in Maine and elsewhere with possible connections to climate change; (2) noteworthy scientific reports with national and international scope released in 2021; and (3) examples of recent peer-reviewed publications from the ongoing work of the scientific community to understand climate change in Maine

    Scientific Assessment of Climate Change and Its Effects in Maine

    Get PDF
    Climate change has already made its presence known in Maine, from shorter winters and warmer summers with ocean heat waves, to stronger storms, new species showing up in our backyards and the Gulf of Maine, aquatic algal blooms, acidic ocean waters that affect shellfish, and new pests and diseases that harm our iconic forests and fisheries. The health of Maine people is also being affected by climate change, from high heat index days driving increased emergency room visits to the ravages of Lyme and other vector-borne diseases. And our economy is feeling the effects, too — with farmers trying to adapt to longer growing seasons but dealing with severe storms and late frosts, aquaculturists already adapting to a more acidic ocean, and winter sports like skiing and snowmobiling being impacted by our shrinking winter season. This is the first report from the Maine Climate Council’s Scientific and Technical Subcommittee, produced by more than 50 scientists from around the State representing Scientific and Technical Subcommittee members, other co-authors, and contributors. This report is part of the 2020 Maine Climate Action Plan. The report summarizes how climate change has already impacted Maine and how it might continue affecting our State in the future

    Best practice data standards for discrete chemical oceanographic observations

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W-J., Chen, C-T. A., Cross, J., Garcia, H., Hernandez-Ayon J. M., Hu, X., Kozyr, A., Langdon, C., Lee., K, Salisbury, J., Wang, Z. A., & Xue, L. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8, (2022): 705638, https://doi.org/10.3389/fmars.2021.705638.Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.Funding for L-QJ and AK was from NOAA Ocean Acidification Program (OAP, Project ID: 21047) and NOAA National Centers for Environmental Information (NCEI) through NOAA grant NA19NES4320002 [Cooperative Institute for Satellite Earth System Studies (CISESS)] at the University of Maryland/ESSIC. BT was in part supported by the Australia’s Integrated Marine Observing System (IMOS), enabled through the National Collaborative Research Infrastructure Strategy (NCRIS). AD was supported in part by the United States National Science Foundation. AV and FP were supported by BOCATS2 Project (PID2019-104279GB-C21/AEI/10.13039/501100011033) funded by the Spanish Research Agency and contributing to WATER:iOS CSIC interdisciplinary thematic platform. MH was partly funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement N°821001 (SO-CHIC)

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort
    corecore