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Key Points 39 

� Development of regional satellite-based pCO2 algorithms for the North American east 40 
coast continental shelf 41 

� Assessment of the seasonal and interannual variability of surface ocean pCO2 and sea-air 42 
CO2 fluxes 43 

� Interannual estimates of the sea-air CO2 flux show that the North American east coast 44 
continental shelf is a sink of atmospheric CO2 ranging between 3.4 and 5.4 Tg C yr-1.  45 

 46 
   47 
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Abstract 48 
 49 
  Underway and in situ observations of surface ocean pCO2, combined with satellite 50 

data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual 51 

variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically 52 

distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), 53 

the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank 54 

(NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability 55 

are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux 56 

were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the 57 

algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, 58 

and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The 59 

estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as 60 

with the use of the two different gas exchange parameterizations. Most of the regional estimates 61 

are in general agreement with previous studies when the range of uncertainty and interannual 62 

variability are taken into account. According to the algorithm, the average annual uptake of 63 

atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 64 

and 5.4 Tg C yr-1 (areal average of 0.7 to 1.0 mol CO2 m-2 yr-1) over the period 2003-2010. 65 

  66 
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1.0 Introduction 74 

 Coastal oceans, despite covering a small fraction of the earth’s surface, are important in 75 

the global carbon cycle because rates of carbon fixation, remineralization, and burial are much 76 

higher than the global average.  A crucial difference between the coastal ocean and the open 77 

ocean is the proximity of sediments to the sea surface, providing a close coupling in space and 78 

time of the pelagic and benthic environments. Thus the shallow water column in coastal regions 79 

constitutes a close link between surface sediments and the atmosphere allowing relatively direct 80 

interactions between both the sedimentary and atmospheric compartments [Borges et al., 2005; 81 

Thomas and Borges, 2012; Thomas et al., 2009; Thomas, 2004]. An additional characteristic of 82 

the coastal seas and continental shelves is the high temporal and spatial variability of CO2 fluxes 83 

[Borges et al., 2005; Borges et al., 2008; Cai et al. , 2006; Frankignoulle and Borges, 2001; 84 

Shadwick et al., 2010; Shadwick et al., 2011]. The driving factors often vary within the system at 85 

seasonal time scales, and the deduction of general patterns remains difficult, typically requiring 86 

detailed case studies. 87 

 The work of Borges [2005] was the first to compile a global coastal shelf sea-air CO2 flux 88 

based on limited observed systems and using an up-scaling scheme. Borges [2005] showed that 89 

the inclusion of the coastal ocean increases the estimates of CO2 uptake by the global ocean by 90 

57% for high latitude areas, and by 15% for temperate latitude areas, while at subtropical and 91 

tropical latitudes the contribution from the coastal ocean increases the CO2 emission to the 92 

atmosphere from the global ocean by 13%.  Cai et al. [2006] conducted a study of sea-air carbon 93 

exchange in ocean margins by grouping the numerous heterogeneous shelves into seven distinct 94 

provinces. Their results showed that the continental shelves are a sink of atmospheric CO2 at 95 

mid-high latitudes (-0.33 Pg C yr-1) and a source of CO2 at low latitudes (0.11 Pg C yr-1), with a 96 
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net uptake of -0.22 Pg C yr-1. Laruelle et al. [2010] evaluated the exchange of CO2 between the 97 

atmosphere and the global coastal ocean from a compilation of sea-air CO2 fluxes scaled using a 98 

spatially-explicit global typology of continental shelves. Their computed sink of atmospheric 99 

CO2 over the continental shelf areas (-0.21±0.36 Pg C yr-1) is at the low end of the range of 100 

previous estimates (-0.22 to -1.00 Pg C yr-1). Laruelle et al. [2010] also concluded that the sea-101 

air CO2 flux per surface area over continental shelves, -0.7±1.2 mol CO2 m-2 yr-1, is twice the 102 

value of the open ocean based on the most recent CO2 climatology at the time. More recently 103 

[Cai, 2011] showed that the continental shelves are sinks of atmospheric CO2 (~0.25 Pg C yr-1, 104 

but still with large uncertainty), accounting for ~17% of open ocean CO2 uptake (1.5 Pg C yr-1, 105 

Takahashi et al., 2009). The largest uncertainty of these scaling approaches stems from the 106 

availability of CO2 data to describe the spatial variability, as well as to capture the relevant scales 107 

of temporal variability. 108 

 Given that relatively large amounts of carbon are exchanged via the sea-air interface in 109 

coastal seas and continental shelves, the knowledge of the seasonal and interannual variability of 110 

the sea-air CO2 flux in coastal oceans is a very important component of the carbon budget, which 111 

requires comprehensive regional studies. In general, the coastal ocean is characterized by a high 112 

variability in carbon cycling, which presents significant challenges in determining spatial and 113 

temporal integrals of relevant quantities, such as the sea-air CO2 flux. Therefore, innovative 114 

methods are needed for scaling up relatively sparse field measurements, in this case surface 115 

ocean pCO2, into the required temporal and spatial resolutions to effectively derive regional sea-116 

air CO2 flux estimates. One method for obtaining such regionally integrated fluxes is through the 117 

use of biogeochemical-circulation models, which can be evaluated using the sparse field 118 

measurements, and then used to compute the mean and variability associated with these regional 119 
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fluxes [Hofmann et al., 2011]. Satellite data, because of their high temporal and spatial 120 

resolution, provide another very promising asset to accomplish this goal. For example, Lohrenz 121 

and Cai [2006] conducted a satellite ocean color assessment of sea-air fluxes of CO2 in the 122 

northern Gulf of Mexico. They used principal component analysis and multiple-regression to 123 

relate the surface ocean pCO2 to SST, salinity and chlorophyll and used retrieval of 124 

corresponding MODIS-Aqua products to assess the regional distributions of pCO2.  125 

In this paper we use multiple regression analysis to relate surface ocean pCO2 to 126 

environmental variables (SST, surface salinity, and chlorophyll) and use the resulting equations 127 

with inputs from corresponding satellite products to provide an assessment of the spatial and 128 

temporal variability of the surface ocean pCO2 and sea-air CO2 flux for the North American east 129 

coast. A brief description of the biological/physical setting of the study region is provided in 130 

Section 2.0. The processing of in situ and satellite data sets and the development of regionally 131 

specific empirical pCO2 algorithms are described in Section 3.0. The algorithm evaluation and 132 

the estimates of sea-air flux from the available pCO2 binned data and algorithm are provided in 133 

Section 4.0, as well as a sensitivity analysis of parameters that influence the surface ocean pCO2 134 

seasonal and interannual variability. Finally, we provide a summary and discussion of suggested 135 

future work in Section 5.0. 136 

 137 

2.0 Physical and Biological Setting 138 

 The temporal and spatial variability of the surface ocean pCO2 on continental shelves are 139 

influenced by a combination of physical and biogeochemical factors, including surface 140 

temperature-driven solubility, biological processes, fall-to-winter vertical mixing, ocean 141 

circulation, river runoff, and shelf-ocean exchange [Wang et al., 2013]. Here we provide a 142 
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summary of the physical and biological factors that are potentially important in shaping the pCO2 143 

variability in the North American east coast continental shelf.  144 

 The definition of the coastal ocean is elusive, as it can be related to bathymetry, 145 

hydrography, or distance from shore; and some features, such as river plumes and coastal 146 

biomass maxima, can be ephemeral. Community efforts to standardize this definition to a fixed 147 

distance from shore, such as Hales et al. [2008] as adopted by the Surface Ocean CO2 Atlas 148 

(SOCAT; http://www.socat.info/), extend seaward from the North American continent beyond 149 

what we feel represents the reach of coastal processes. As a result, we have used the outer 150 

boundaries of the regions defined by Hoffman et al. [2008, 2011] to define the extent of the 151 

coastal ocean. The North American east coast (Fig. 1) encompasses three large regions of diverse 152 

physical and biological characteristics: the southeast U.S. continental shelf, also known as the 153 

South Atlantic Bight (SAB), the northeast U.S. continental shelf, and the Scotian Shelf (SS).  154 

Within the northeast U.S. continental shelf there are four sub-regions: the Middle Atlantic Bight 155 

(MAB), Georges Bank (GB), Nantucket Shoals (NS), and the Gulf of Maine (GoM). For this 156 

study we combined the GB and NS regions into a single region (GB+NS) for simplicity and 157 

because these two regions share many similar physical and biogeochemical attributes [Fox et al., 158 

2005; Shearman and Lentz, 2004; Thomas et al., 2003]. These North American continental shelf 159 

sub-regions are defined in Hofmann et al. [2011] with the GB+NS region separated from the 160 

GoM as in Hofmann et al. [2008]. The 58 coastal sub-regions shown in Hofmann et al. [2008] 161 

were developed based on a combination of bathymetry, SST fronts, stratification, and biological 162 

properties. For simplicity, here we consolidate the very fine regional domains into five major 163 

sub-regions described above.  However, we recognize that previous studies have adopted other 164 

methods to identify regional domains [Hales et al., 2008; Hales et al., 2012]. For example, a self 165 



9 
 

organizing mapping method has been adopted to sub-regionalize the North American Pacific 166 

Coast [Hales et al., 2012]. The method relies on an artificial neural network to identify 167 

biogeochemical regions within the target study area. 168 

 Our focus is on the continental shelf which we operationally define as depths less than 169 

200 meters since the depth of the actual shelf break varies.  Bathymetric variation in our study 170 

area is large. Portions of GB and NS are only several meters below the sea surface, whereas in 171 

the GoM and areas of the SS, water depths exceed 200 m. Our study area is also at the 172 

‘crossroads’ of the north-flowing Gulf Stream and the southwest-flowing slope water-Labrador 173 

current [Rossby, 1987].  Chapman and Beardsley [1989] suggest that glacial melt and runoff 174 

from Western Greenland generates a buoyancy-driven coastal current that flows over the SS and 175 

GB and eventually into the MAB.  This coastal current is an important driver to the distribution 176 

of the marine CO2 system, including surface pCO2 along its flow path [Wang et al., 2013], i.e., 177 

the Gulf of St Laurence, the SS, the GoM and the MAB. There is little exchange of water 178 

between the MAB and SAB along the narrow shelf at Cape Hatteras. In the SAB, the Gulf 179 

Stream is close to the shelf break and has a direct influence on the outer SAB shelf [Signorini 180 

and McClain, 2007], readily identifiable by the warm and salty signature shown in seasonal 181 

maps of sea surface temperature (SST), sea surface salinity (SSS), and chlorophyll (Chl) of Fig. 182 

2 (see Section 3.0 for methodology), whereas north of Cape Hatteras, the influence of the Gulf 183 

Stream is more indirect. Here anti-cyclonic warm core rings result from landward meanders of 184 

the Gulf Stream [Joyce et al., 1992].  The rings are carried in the southwestward flow of slope 185 

water where they interact with the outer shelf from GB to Cape Hatteras, frequently entraining 186 

phytoplankton-rich shelf water [Joyce et al., 1992].  Near Cape Hatteras, the warm core rings 187 

may be reabsorbed into the Gulf Stream, a process readily apparent in daily time series 188 



10 
 

animations of chlorophyll (Chl) and SST. In the SAB, the outer shelf waters are warmer (Fig. 2) 189 

in summer and autumn than winter and spring due, in part, to the proximity of the Gulf Stream as 190 

a result of the expansion of the subtropical gyre [Signorini and McClain, 2007]. 191 

 The pCO2 variability in riverine-plume systems is a result of complex biogeochemical 192 

interactions. In the Gulf of Maine for instance, labile riverine carbon is responsible for sustaining 193 

supersaturated pCO2 conditions in late fall, while at other times of the year phytoplankton 194 

productivity, most likely driven by inputs of riverine dissolved inorganic nitrogen, is responsible 195 

for pCO2 undersaturation [Salisbury et al., 2008]. The North American east coast continental 196 

shelf is influenced by the discharge of several major rivers and estuaries (Chesapeake Bay, 197 

Delaware Bay, and Gulf of St Lawrence, for example) that contribute to complex physical and 198 

biogeochemical interactions that influence the seasonal and interannual variability of the surface 199 

ocean pCO2, an important parameter for the determination of the sea-air CO2 flux. Vandemark et 200 

al. [2011] showed that the observed pCO2 and CO2 flux dynamics in the Gulf of Maine are 201 

dominated by a seasonal cycle, with a large spring influx of CO2 and fall-to-winter efflux back to 202 

the atmosphere. They also showed that in the western Gulf of Maine the ocean is a net source of 203 

carbon to the atmosphere (+0.38 mol CO2 m-2 yr-1) over a period of five years, but with a 204 

moderate interannual variation where years 2005 and 2007 represent cases of regional source 205 

(+0.71 mol CO2 m-2 yr-1) and sink (-0.11 mol CO2 m-2 yr-1) anomalies, respectively. Comparison 206 

of results with the neighboring Middle Atlantic and South Atlantic Bight shelf systems showed 207 

that the Gulf of Maine differs by enhanced pCO2 control factors other than temperature-driven 208 

solubility, such as biological drawdown, fall-to-winter vertical mixing, and river runoff 209 

[Salisbury et al., 2008; Shadwick et al., 2010]. 210 
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 Shadwick et al. [2011] investigated the seasonal variability of pCO2 in the Scotian Shelf 211 

and concluded that the region acts as a net source of CO2 to the atmosphere on an annual basis 212 

(1.4 mol CO2 m-2 yr-1). On a seasonal basis, there is a reversal of the flux only when a 213 

pronounced undersaturation of surface waters is reached for a short period during the spring 214 

bloom. Outside of the spring bloom period, the competing effects of temperature and biology 215 

influence on surface pCO2 are nearly equal and opposite. DeGrandpre et al.[2002], based on 216 

measurements of surface ocean pCO2 during the Ocean Margins Program [Verity et al., 2002], 217 

concluded that the MAB is a sink of atmospheric CO2 with an annual mean of -1.0 ± 0.6 Tg C yr-218 

1, or an area average of -1.1 ± 0.7 mol CO2 m-2 yr-1. A significant portion of this atmospheric 219 

uptake is a result of the annual cycle of heating and cooling combined with strong winds during 220 

the winter undersaturation period. 221 

 Jiang et al. [2008] showed that on an annual basis the SAB is a relatively small net sink 222 

of atmospheric CO2 (-0.48 ± 0.21 mol CO2 m-1 yr-1). Seasonally, the SAB shifts from a sink of 223 

atmospheric CO2 in winter to a source in summer. The annual cycle of sea surface temperature 224 

plays an important role in controlling the seasonal variation of pCO2.  The combination of 225 

stronger wind speeds during fall-winter, when CO2 undersaturation is significant due to lower 226 

SSTs, results in a net annual CO2 sink. Other important factors controlling the pCO2 variability 227 

in the SAB are the marsh export of organic carbon and DIC in the warm months (June-228 

November), which directly supports CO2 outgassing in these months via organic carbon 229 

decomposition and increase in DIC [Jiang et al., 2013; Wang et al., 2005]. In addition, the marsh 230 

areas in the SAB also export alkalinity, another important factor influencing the variability of 231 

pCO2 and sea-air flux [ Wang et al., 2005; Wang and Cai, 2004].     232 
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 The seasonal Chl climatology from MODIS Aqua (Fig. 2) shows that the maximum Chl 233 

in the GoM, GB and NS occurs during spring (March-April-May, MAM). The GB region has the 234 

highest Chl in spring, but it is maintained at concentrations above 2.5 mg m-3 in all seasons due 235 

to vigorous tidal mixing. Fig. 2 also shows that the low-salinity nearshore waters along the entire 236 

east coast coincide with regions of elevated Chl, an indication of the influence of nutrient-rich 237 

riverine waters. On the MAB shelf, there is a high-Chl region during winter (December-January-238 

February, DJF) in the near shore and outer-shelf waters, but the fall bloom (SON) dominates 239 

between approximately the 40- and 60-m isobaths. The high satellite-derived ‘Chl’ in winter may 240 

be in part colored dissolved organic matter flowing out from rivers, plus photo-acclimation by 241 

phytoplankton (higher Chl-a due to low surface solar radiation and a well-mixed water column).  242 

 The minimum surface Chl over much of the MAB occurs during summer (JJA) when 243 

highest SST (Fig. 2), peak stratification and a pronounced subsurface Chl maximum layer occur 244 

[O'Reilly and Zetlin, 1998]. Summer mixed-layer depths of ~3.5 to 10 m are typical for MAB 245 

shelf waters. The spring bloom (MAM) is clearly shown by the elevated Chl concentrations in 246 

the MAB, GB, and GoM (Fig. 2). Fig. 2 also shows that the SAB Chl has its largest changes in 247 

the outer shelf, with a maximum in DJF and lowest values in JJA under the influence of the 248 

oligotrophic waters of the Gulf Stream. 249 

 250 

3.0 Data Sets and Methods 251 

3.1 Processing of In Situ and Satellite Data Sets  252 

The surface ocean pCO2 data are obtained from SOCAT, combined with additional 253 

available data from regionally specific field experiments (see Appendix A) and binned by month 254 

for each year (1978-2010) into 0.15ox0.15o grid cells. The SOCAT data [Pfeill et al., 2012] holds 255 
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6.3 million quality-controlled surface ocean pCO2 from the global oceans and coastal seas 256 

covering the period of 1968 to 2007. These data were put together following uniform format and 257 

a strict protocol that included quality control with clearly defined criteria performed by a team of 258 

international experts.  259 

The MatLab function bin2d, developed by J. Nielsen and available at the Nansen 260 

Environmental and Remote Sensing Center (NERSC) from www-2.nersc.no/~even/, was used to 261 

bin all data sets into the study grid. First, all the available data within 24oN to 46oN and 82oW to 262 

56oW were selected for binning. These included 416,261 co-located surface ocean pCO2, SST 263 

and sea surface salinity (SSS) values from SOCAT from the period 1978-2007, 11,628 from the 264 

2006 SAB cruise (only 2005 cruises are included in SOCAT), and 309,665 from the GoM (2004-265 

2010).  The binned pCO2 data were then adjusted to reference year 2004 using an atmospheric 266 

growth rate of 1.68 �atm yr-1 [Le Quéré et al., 2010] and assuming that the surface ocean pCO2 267 

is trending at the same pace as the atmosphere. All the adjusted pCO2 data were then binned into 268 

12 individual calendar months, each containing the average of all data within a particular month 269 

and grid bin. The data were then divided into regional study domains following the boundaries 270 

shown in Fig. 1. 271 

The available pCO2 data were divided into two individual sets, one dedicated to 272 

algorithm development (data bins covering more than 6 months) and one dedicated to algorithm 273 

evaluation (data bins covering less than 6 months).  Surface ocean pCO2 data from underway 274 

(UW) transects across the Scotian Shelf and pCO2 time series from the CARIOCA buoy located 275 

at 44.296oN and 63.257oW [Shadwick et al., 2010] were also used for algorithm evaluation, 276 

together with SOCAT data on the Scotian Shelf not used for the algorithm development. Fig. 3a 277 

shows color-coded SOCAT surface ocean pCO2 cruise tracks and Fig. 3b shows corresponding 278 
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coastal binned data with associated color-coded temporal coverage in months. The highest 279 

temporal coverage corresponds to the most travelled routes (in orange to red), i.e., most frequent 280 

destination ports (Boston, New York, Norfolk, Miami) used by the Volunteering Observing 281 

Ships (VOSs). The VOS ships according to map available at the CDIAC web site 282 

(http://cdiac.ornl.gov/oceans/VOS_Program/) are: the Skogafoss, A. Companion, Oleander, 283 

Falstaff, and Explorer of the Seas. The SOCAT data set also includes transects occupied by 284 

research vessels. Fig. 3 clearly shows that the surface ocean pCO2 data have spatial and temporal 285 

distribution gaps that may be potentially responsible for biases in the calculation of sea-air 286 

fluxes.   287 

Monthly sea-surface salinity (SSS) climatology was interpolated and gridded onto the 288 

0.15ox0.15o study domain grid using the World Ocean Database (WOD) 2009 station data and 289 

the method of Kriging. The Interactive Data Language (IDL) function KRIG2D was used for this 290 

purpose. Monthly climatologic mixed layer depth (MLD) was derived from WOD 2005 for the 291 

entire East Coast based on temperature profiles using 0.5o C temperature difference criterion 292 

[Hofmann et al., 2008]. The MLD data were binned into the same 0.15ox0.15o study domain 293 

grid.  294 

Both data and algorithm sea-air CO2 flux estimates were obtained using gridded 295 

(0.25ox0.25o) winds from the Jet Propulsion Laboratory Cross-Calibrated Multiple Platforms 296 

(CCMP, Atlas et al., 2011) product (ftp://podaac-ftp.jpl.nasa.gov/allData/ccmp/L2.5/flk). 297 

Monthly wind climatology was derived using data from 1999 to 2008, a period approximately 298 

centered on 2004, the reference year adopted for the adjusted surface ocean pCO2 data. The 299 

climatologic and interannual CCMP monthly winds were re-gridded (0.15ox0.15o) and 300 

extrapolated nearshore using the function “surface” from Generic Mapping Tools (GMT, Smith 301 
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and Wessel, 1990; Wessel and Smith, 1991) which is based on an adjustable tension continuous 302 

curvature surface gridding method. High frequency (10-minute) winds from 10 NOAA National 303 

Oceanographic Data Center NDBC buoys (http://www.nodc.noaa.gov/BUOY/) and hourly winds 304 

from Sable Island were used to obtain correction coefficients to account for nonlinearities in the 305 

gas exchange parameterization resulting from the use of monthly climatologic winds.  The 306 

method for deriving these coefficients is described under sub-section 3.3. 307 

All parameters used to develop the pCO2 algorithm and to derive the sea-air CO2 flux, 308 

including all satellite data products (SST and Chl), SSS and the CCMP wind speed were also 309 

binned monthly into the same grid. The satellite data products consisted of 9-km, level 3 310 

mapped, MODIS Aqua (MODISA) climatologic and interannual monthly composites of SST and 311 

Chl obtained from the NASA ocean color distribution archive (http://oceancolor.gsfc.nasa.gov/). 312 

A validation between log-transformed MODISA Chl retrievals vs. all available in situ 313 

observations (SAB to GoM, depth<=200m, N=404), conducted using the SeaBASS (SeaWiFS 314 

Bio-optical Archive and Storage System: http://seabass.gsfc.nasa.gov/) data search and 315 

validation tools, showed good matchup agreement (r2=0.75, RMSE=0.30, APD=35.8%). For the 316 

algorithm development we used the available binned surface ocean pCO2, SST and SSS derived 317 

from the in situ data, combined with monthly climatologic satellite Chl binned at the same grid 318 

points as no in situ concurrent Chl measurements are available. For the algorithm application we 319 

used monthly interannual (2003-2010) satellite SST and Chl, and monthly climatologic SSS 320 

derived from WOD 2005 data.  321 

Seasonal maps were constructed by averaging the monthly data and derived products into 322 

four three-month composites, defined as: winter (December-January-February, DJF), spring 323 
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(March-April-May, MAM), summer (June-July-August, JJA), and autumn (September-October-324 

November, SON). 325 

 326 

3.2 Development of Regional pCO2 Algorithms  327 

 The algorithm development is based on binned in situ pCO2, SST and SSS, and satellite-328 

derived Chl monthly climatology, as well as day of the year (Julian day). The algorithm was 329 

developed through the multiple linear regression (MLR) analysis based on all spatial bins 330 

containing more than six available monthly occurrences of the in situ data (remaining data were 331 

reserved for evaluation), and is represented as:  332 

 333 

+ 334 

 1.68(year – 2004)          (1) 335 

 

 336 

The first terms in brackets represent the surface ocean pCO2 corrected to the year 2004 and the 337 

last term is a correction factor for different years to account for the rise of surface ocean pCO2 338 

due to the uptake of anthropogenic CO2. The input for ‘‘Day’’ (Julian day) was normalized 339 

sinusoidally to emphasize the seasonal cycle and to allow January to be close to both 340 

February and December [Friedrich and Oschlies, 2009; Lefèvre et al., 2005]. The value of � 341 

(phase of Day’ in days) is optimized via iteration (ranging from 0 to 365 days) until the 342 

minimum RMSE is obtained. To, So, Chlo are temperature, salinity, and chlorophyll mean values 343 

for each region. The choice of log10 (Chl) instead of Chl in our algorithm was an arbitrary choice, 344 

and therefore limited mechanistic information can be drawn in the empirical result. 345 
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 A separate analysis was conducted to evaluate the algorithm by using surface ocean pCO2 346 

data not used in the development of the algorithm equations (see Section 4.1). These data 347 

consisted of bins from the monthly composites that have less than six months of available pCO2 348 

occurrences. Satellite-derived SST, Chl, in situ SSS monthly climatology was matched with the 349 

locations and months of the selected pCO2 bins and used as algorithm input. The pCO2 derived 350 

from the algorithm ( ) was matched with the observed pCO2 ( ) and a scatter plot 351 

and histogram of residuals were made for all combined regions to evaluate the algorithm 352 

performance. The algorithm was also evaluated using data from the SS (Shadwick et al., 2010). 353 

 354 

3.3 Calculation of the Sea-air CO2 Flux 355 

 The sea-air pCO2 difference (�pCO2) was calculated using monthly GLOBALVIEW 356 

[GLOBALVIEW-CO2, 2011] atmospheric xCO2 from Grifton, North Carolina, a station located 357 

approximately midway in the study domain. The xCO2 (in �mol mol-1) was converted to pCO2 358 

(air) using the method of Jiang et al. [2008]. For this conversion we used monthly surface 359 

barometric pressure and air temperature from NOAA NCEP-NACR CDAS-1 [Kalnay et al., 360 

1996] and monthly climatologic SSS from WOA09. Although several other GLOBALVIEW 361 

stations are available along the study coastal domain, the atmospheric pCO2 records are not very 362 

different to justify a more site-specific use of the data. Regarding the use of the atmospheric 363 

xCO2 in this study, it has been demonstrated that there are uncertainties involved in using marine 364 

boundary layer xCO2 rather than the in situ xCO2 due to the effect of continental processes. For 365 

example, Jiang et al. [2007] showed that the average atmospheric xCO2 on the SAB can be 366 

almost 10 ppm higher than the measured in the open ocean with the potential of reversing the 367 

direction of the sea-air flux. Although this is a potential source of uncertainty in the calculation 368 
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of the sea-air flux, concurrent in situ atmospheric xCO2 are only available for a limited number 369 

of coastal cruises. 370 

 Climatologic (1999-2008) CCMP monthly wind speeds at 10-m anemometer height 371 

(U10), based on a decade of data centered on the reference year 2004, were binned similarly and 372 

used to derive the monthly sea-air CO2 flux for each bin and each month using the following gas 373 

transfer parameterization  374 

 375 

                                            s     (2) 376 

 377 

in units of mol CO2 m-2 d-1. Sc is the Schmidt number (non dimensional), s the solubility of CO2 378 

in seawater in mol CO2 m-3 �atm-1, and  is the sea-air pCO2 difference in �atm. The term 379 

k660 is the quadratic gas transfer coefficient in cm h-1 (converted to m d-1). We calculated the sea-380 

air CO2 flux using two relationships of gas exchange with wind speed (U10), the quadratic 381 

dependence formulation of Ho et al. [2011], for which , and the polynomial 382 

dependence of Wanninkhof et al. [2009], for which 383 

, using the appropriate nonlinearity correction coefficients C2 and C3, which are 384 

correction factors to account for the use of monthly climatologic wind speeds [Jiang et al., 385 

2008]. These were calculated using 10-minute wind speeds from 10 NDBC buoys distributed 386 

within the SAB, MAB, GB+NS, and GoM regions, and Sable Island 1-hour wind speeds for the 387 

SS (see locations in Fig. 1), and the correction factor equations given in Jiang et al. [2008] , 388 

 and , where Uj is the high-frequency wind 389 

speed (m/s), Umean is the monthly mean wind speed (m s-1), and n is the number of available wind 390 

speeds in each month. The value of C2 and C3 were obtained for each site and month for the 391 
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period 1999-2008. Monthly climatologic averages were calculated for each site and for each 392 

region. The values of C2 range from 1.2 to 1.3, while those for C3 range from 1.6 to 2.0. These 393 

values were then used to apply corrections to the gas transfer parameterizations when calculating 394 

the sea-air CO2 flux. The same methodology was applied to derive data-based and algorithm-395 

based sea-air fluxes. We use the atmospheric convention for the CO2 flux, i.e., a negative flux is 396 

defined as a sink of atmospheric CO2 by the ocean.  397 

 The regional algorithms (Table 1 and Equation 1) were used to derive values of surface 398 

ocean pCO2 using MODIS Aqua monthly composites of SST and Chl for 2003-2010, and 399 

monthly SSS climatology. Gap filling of missing satellite data was done with monthly 400 

climatology composites for each of the input parameters. The sea-air CO2 flux was then 401 

computed using interannual monthly CCMP winds and the gas transfer parameterization shown 402 

in Equation 2.  403 

 404 

3.4 Monthly Climatology of DIC and Alkalinity for pCO2 Parameter Sensitivity 405 

 The data sets used to generate monthly climatologies of DIC and alkalinity (Alk) include 406 

the MODIS SST monthly climatology, the Kriged monthly SSS climatology derived from WOA 407 

2009 salinity data, and surface ocean pCO2 from the algorithm. Monthly alkalinity was derived 408 

as a function of salinity from Cai et al. [2010] using SSS monthly climatology. DIC was then 409 

derived from alkalinity, SST, SSS, and monthly pCO2 from the algorithm using CO2SYS 410 

(http://cdiac.ornl.gov/ftp/co2sys/CO2SYS_calc_MATLAB/), a MatLab program to calculate the 411 

state of the carbonate system. The input for CO2SYS consisted of alkalinity, DIC, SST, SSS, the 412 

choice of  and  dissociation constants (K1, K2) of “Mehrbach refit” [Dickson and 413 

Millero, 1987], the choice of  dissociation constant of  “ Dickson” [Dickson, 1990], and 414 
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zero concentration for silicate and phosphate. The total borate-salinity relationship of Uppstrom 415 

[1974] was used.  416 

 The monthly binned SST, SSS, DIC, and alkalinity fields were then averaged over each 417 

region to obtain 12 monthly values for each variable and region. We refer to these regional 418 

averages as SSTi, SSSi, DICi, and Alki, where the superscript indicates the calendar month from 419 

1 to 12. We also computed the annual average of each of these four spatial averages, which we 420 

call,  , , and . From the regional averages, we computed the monthly pCO2 using 421 

CO2SYS, 422 

,       (3) 423 

and the annual average, . 424 

The deviation of pCO2 from its annual average is given by 425 

          (4) 426 

 To determine the sensitivity of pCO2 to each of the four variables, we hold three variables 427 

at their annual averages and let the fourth variable change from month to month. For example, to 428 

determine the impact of temperature on pCO2, we computed 429 

        (5) 430 

 In an analogous way, we computed pCO2
i,SSS, pCO2

i,DIC , and pCO2
i,Alk, which describe 431 

the respective influences of SSS, DIC, and Alk on pCO2. We also computed the deviation of 432 

pCO2 from its annual average due to each of the four variables. For example, the deviation of 433 

pCO2 from its annual average due to temperature is . Similarly, �i,SSS, 434 



21 
 

�i,DIC , and �i,Alk, describe the deviations of pCO2 from its annual average due, respectively, to 435 

SSS, DIC, and Alk. The results of this analysis will be discussed in sub-section 4.3. 436 

  437 

4.0 Results and Discussion 438 

 Regional algorithms were developed with distinct coefficients derived for each of the five 439 

regions (Table 1) and then used to derive seasonal and interannual surface ocean pCO2 and sea-440 

air CO2 fluxes (Tables 2 and 3).  441 

 442 

4.1 Performance of Regional Algorithms 443 

 In this section we provide an assessment of the statistical importance of each proxy 444 

parameter used in the algorithm (Fig. 4), regional matchups of algorithm versus data and 445 

seasonal pCO2 plots based on monthly averages derived from data and algorithm (Fig. 5), 446 

algorithm versus data matchups using pCO2 observations not used in the algorithm development 447 

(Fig. 6), a regional matchup analysis for the Scotian Shelf (SS) using a combination of UW pCO2 448 

data from Dalhousie University and a few from SOCAT (Fig. 7), and time-series of algorithm 449 

pCO2  for seven distinct sub-regions of the SS (concurrent data points) following a more recent 450 

work of Thomas et al. [2012] (Fig. 8).  Finally, a high frequency algorithm validation was 451 

performed against surface pCO2 observations from the CARIOCA buoy on the SS using 452 

concurrent hourly observations of SST, SSS, and Chl (Fig. 9).   453 

 Fig. 4 shows the statistical (goodness-of-fit) performance resulting from the incremental 454 

addition of proxy parameters for each of the five regions. The statistical performance is shown as 455 

a goodness-of-fit diagram with normalized RMSE on the x-axis, and (1 – r2) on the y-axis. 456 

Consequently, a perfect fit would lie at the origin of this diagram (0, 0). The diagram shows that 457 
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the variable Day’ by itself provides (1 - r2) values less than 0.6 for all regions. Incremental 458 

improvements of both normalized RMSE and (1 – r2) are different for each region. Extreme 459 

examples of statistical improvement are the addition of salinity for the SAB and log10(Chl) for 460 

the SS. 461 

 Fig. 5 shows scatter plots of algorithm-derived versus observed surface ocean pCO2 and 462 

associated seasonal plots of regionally-averaged pCO2. As shown in Table 1, there is a statistical 463 

range for the coefficients derived for each region using Equation 1. The r2 is lowest for the GoM 464 

(0.42) and highest for the SAB (0.82). The quality of the statistical fit depends on a combination 465 

of factors, including data coverage and how well the proxy variables represent the surface ocean 466 

pCO2 variability in space and time within each region.  467 

 The regional algorithms were then applied using binned inputs (SST, SSS, and Chl) 468 

matching the month and location of the observed surface ocean pCO2 not used for the algorithm 469 

development, and then compared with the corresponding observed pCO2. The results are shown 470 

in Fig. 6a and 6b. The observed versus algorithm correlation coefficient (color coded scatter plot 471 

in Fig. 6a with summary of statistics in the legend) range from 0.27 (r2) for the GoM with a 472 

RMSE= 25 �atm to 0.78 for the SAB with a RMSE=21 �atm. The histogram of residuals (Fig. 473 

6b) shows that 86% of the residuals are less than the observed pCO2 standard deviation (±�), 474 

while 40% of residuals are within less than �/3 (±16 �atm). 475 

 Data from SOCAT on the SS, and Dalhousie University UW transects [Shadwick et al., 476 

2010] covering the period of 2004-2008, were averaged within seven 2ox2o boxes on the SS (Fig. 477 

7a) and compared with area-averaged algorithm predictions within the same boxes. The scatter 478 

plot of observed vs. algorithm pCO2 for the 37 resulting averages is shown in Fig. 7b. The 479 

agreement between data and algorithm predictions is quite reasonable with r2=0.79 and 480 
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RMSE=26.2 �atm. The time series of algorithm pCO2 was obtained using SST and Chl from 481 

MODIS Aqua monthly composites and WOA09-derived SSS climatology. The algorithm time 482 

series for all seven boxes are shown in Figs. 8a and 8b with the SOCAT (red circles) and UW 483 

(blue circles) values superposed for comparison. A high frequency algorithm test was done by 484 

comparing the CARIOCA buoy one-hour pCO2 record on the SS during 2007-2010 with 485 

algorithm results using one-hour inputs of SST, SSS and calibrated fluorometer Chl concurrent 486 

observations from the buoy. These data have been reported by Thomas et al. [2012]. The time 487 

series and scatter plot of observed vs. algorithm pCO2 are shown in Fig. 9. The algorithm 488 

predictions track the observed pCO2 reasonably well with r2=0.46, RMSE=40.3 �atm and mean 489 

absolute percent difference (MAPD) of 8.8%. The observed and algorithm values for 2007-2010 490 

mean and standard deviation are quite similar, 422.3±54.7 �atm and 413.1±56.9 �atm, 491 

respectively, which show a relatively small bias (9 �atm) and very similar variance. 492 

 493 

4.2 Seasonal Surface Ocean pCO2, Alkalinity, DIC and Sea-Air Flux from Data and Algorithm 494 

 Fig. 10 shows seasonal maps of algorithm surface ocean pCO2 adjusted for reference year 495 

2004 and corresponding seasonal maps of alkalinity and DIC. Fig. 10 shows that the temporal 496 

and spatial variability of pCO2 is quite different from region to region and that the seasonal 497 

changes are not in sync among the five analyzed coastal domains. This is also evident in the 498 

seasonal plots of data-derived surface ocean pCO2 in Fig. 5. The lowest values (280 to 320 �atm) 499 

occur mostly during winter (DJF) in the MAB, SAB, and in the near shore areas of the SS in 500 

spring (MAM). Low values are also present in spring in the GB+NS region. These low values are 501 

generally associated with low SSTs (See Fig. 2). The highest values (> 480 �atm) occur in the 502 

offshore region of the SS in autumn (SON) and the near shore areas of the SAB in summer 503 
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(JJA), the latter influenced by the discharge of carbon-rich (primarily DOC) estuarine effluents 504 

[Alberts and Takacs, 1999; Cai, 2011] and marsh DIC export [Wang and Cai, 2004]. The surface 505 

ocean pCO2 in the MAB shows much less variability alongshore than cross-shelf, except in the 506 

southern region and outer shelf where Gulf Stream intrusions and shelf-slope fronts induce 507 

strong hydrographic and biogeochemical horizontal gradients. DeGrandpre [2002], and 508 

references within, identified similar alongshore homogeneity in connection with little alongshore 509 

variability on mid-shelf hydrography, nutrients, surface dissolved oxygen, Chl concentrations, 510 

and primary production. The high values in the offshore region of the SS in autumn are 511 

associated with low drawdown by phytoplankton, as indicated by the higher values of DIC, as 512 

shown in Fig. 10 discussed later in this section, and confirmed by the work of Craig et al. [2013] 513 

for this region. The GoM has highest pCO2 (> 400 �atm) values in winter and fall when vertical 514 

mixing is more vigorous and phytoplankton drawdown is significantly reduced. 515 

 The seasonal maps of alkalinity in Fig. 10 follow the seasonal surface salinity distribution 516 

in Fig. 2 as alkalinity was derived as a linear function of salinity, albeit with different 517 

coefficients for each region. There is a sharp transition in alkalinity at Cape Hatteras. South of it, 518 

in the SAB, alkalinity is highest in the middle and outer shelves due to the influence of high-519 

salinity Gulf Stream waters. Alkalinity is highly reduced in the nearshore region under the 520 

influence of low-salinity riverine waters. However, in the very nearshore areas high alkalinity 521 

values were observed due to significant export from the marsh areas during the warm months 522 

[Cai et al., 1998]. North of Cape Hatteras all regions have much lower alkalinity than the middle 523 

and outer shelf regions of the SAB. The inner and middle shelf regions of the MAB and southern 524 

GoM have even lower alkalinity, especially during summer (JJA) when surface salinity is at a 525 

minimum. This summer minimum salinity follows the peak discharge of the major rivers in 526 
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spring with a delay of approximately 1-2 months [Whitney, 2010]. However, the SSS minimum 527 

on the SS comes in autumn (SON) with the peak St Lawrence outflow. 528 

 The Alk and salinity relationships generally followed a single river-ocean mixing line in 529 

the SAB and MAB regions, but a two-segment line in the northeastern waters due to the strong 530 

alongshore current and influences from the low alkalinity local rivers [Cai et al., 2010].   531 

 The seasonal DIC maps in Fig. 10 show highest values in the GoM and offshore regions 532 

of the SS in winter-spring, a likely result of vigorous vertical mixing. Lowest DIC values occur 533 

in the MAB and southern GoM in summer, influenced by the low-DIC riverine waters that peak 534 

during spring, as well as low-DIC water of the Labrador Coastal Current that flows through the 535 

region [Wang et al., 2013]. The DIC seasonal variability is also highly influenced by the 536 

drawdown of CO2 by the net community production during spring-summer. In general, the SAB 537 

has much less seasonal DIC and alkalinity variability than the other regions to the north. 538 

 The monthly and annual mean sea-air CO2 flux was calculated using  derived from 539 

both binned data and algorithm (Table 2) and the two gas transfer parameterizations described in 540 

Section 3.3. The estimates were based on monthly wind climatology for 1999-2008 derived from 541 

satellite (Atlas CCMP) winds. The differences between the two different parameterizations are 542 

relatively small ranging from 6% to 17%, except for the GoM where the fluxes are small causing 543 

much larger differences between the two methos. For simplicity we compare the flux estimates 544 

between binned data and algorithm based on the Ho et al. [2011] parameterization. 545 

 There is a general agreement in sign and magnitude between the data-derived and 546 

algorithm-derived estimates for the MAB, SAB, and GB+NS (Table 2). The annual mean sea-air 547 

CO2 flux in the GoM derived by both methods range from +0.02±0.12 to +0.17±0.32 Tg C yr-1, 548 

or a weak source to the atmosphere on average, but within the range of the estimates given by 549 
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Vandermark et al. [2011] for the southern GoM (-0.16 to +1.1 Tg C yr-1 when converted from 550 

specific to up-scaled total sea-air flux for the entire GoM). The MAB, SAB, GB+NS and SS are 551 

net sinks ranging from -0.6±0.2 to -1.8±0.2 mol CO2 m-2 yr-1. These estimates from the binned 552 

data and algorithm are in general agreement with previous studies (see Table 2) when the range 553 

of uncertainty and interannual variability are taken into account. One exception is the SS where 554 

previous studies [Shadwick et al., 2010; Shadwick et al., 2011] indicate that the SS is a source of 555 

CO2 to the atmosphere while this study indicates the opposite. Since the algorithm seems to 556 

perform well in the SS when compared with the available data, the reason(s) for the apparent 557 

discrepancy remains elusive and highlights the fact that there are still large differences in the sea-558 

air flux estimates with different degrees of uncertainty from region to region.  559 

  The combined uptake by the east coast continental shelf based on both binned data and 560 

algorithm, and using both gas transfer parameterizations, ranges from 3.6 to 4.3 Tg C yr-1.   561 

 562 

4.3 Sensitivity Analysis of Parameters that Influence the pCO2 Seasonal Variability 563 

Here we present a sensitivity analysis of the most influential parameters affecting the 564 

surface ocean pCO2 variability in the study region. The seasonal cycles of each influential 565 

parameter are plotted in Fig. 11 together with the seasonal surface ocean pCO2 from the 566 

algorithm with the seasonal mean removed. Inspection of Fig. 11 shows that the amplitude of 567 

SST and DIC contributions in the MAB, GoM, GB+NS, and SS are similar but having opposite 568 

phase. Seasonal variability of pCO2 (DIC) in these regions is consistent with winter mixing 569 

enhancement and biological drawdown in spring-summer. In contrast, the major contributing 570 

factor to the seasonal pCO2 variability in the SAB is SST. Alkalinity influence is the third most 571 

important and salinity relatively the least influential. However, salinity has an impact in the 572 
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statistical improvement of the pCO2 algorithm, most pronounced in the SAB, which is a region 573 

where seasonal SSS variability is large (see Fig. 2), especially on the inner shelf.  574 

 The seasonal DIC variability averaged for all five study regions, with the MLD 575 

superimposed, is shown in Fig. 12. The four study regions north of Cape Hatteras (MAB, GoM, 576 

GB+NS, and SS) have distinct DIC seasonal cycles with amplitudes of 100 to 120 �mol kg-1. 577 

Regionally-averaged winter MLDs range from 30 m in the MAB to more than 100 m in the 578 

GoM. Deeper MLDs in winter/autumn, resulting from wind and convective mixing, is the major 579 

factor contributing to the elevated DIC concentrations (2010 to 2080 �mol kg-1) shown during 580 

these seasons. The shoaling of the MLDs in spring-summer, together with the drawdown of CO2 581 

by biology, are the major factors driving the significant reduction in surface DIC. For instance, in 582 

the MAB the DIC drops from 2020 �mol kg-1 in February-March to 1900 �mol kg-1 in June. In 583 

addition to biology and deep mixing, DIC, and consequently the surface ocean pCO2, is also 584 

affected by sea-air exchange. In the GoM, for instance, there is a significant effect of the sea-air 585 

exchange on DIC when the �pCO2 is high and the mixed layer becomes very shallow (J. 586 

Salisbury personal communication, 2012). The amplitudes of the seasonal MLD and DIC in the 587 

SAB are significantly less than in the other regions, most probably due to the shallower depths 588 

and much lower phytoplankton productivity. 589 

 590 

4.4 Interannual Variability of Surface Ocean pCO2 and Sea-Air Flux 591 

 The interannual variability of surface ocean pCO2 and sea-air CO2 flux were calculated 592 

using the algorithm (Equation 1) with inputs from monthly satellite products (SST and Chl) for 593 

2003-2010 and climatologic SSS.  The sea air flux was computed using monthly CCMP winds 594 

for the same period. The results are shown in Fig. 13 (pCO2 left panel, sea-air flux right panel) 595 
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and summarized in Table 3. Note that the algorithm results in Table 2 were derived using 596 

monthly satellite climatology of SST and Chl, and climatologic winds, while those in Table 3 are 597 

from monthly interannual satellite products and winds. The GoM and SS have the largest 598 

interannual variability in sea-air CO2 flux. The flux in the SS is positive (source) in 2005 (+0.15 599 

Tg C yr-1) and negative (weak sink) in 2006 (-0.02 Tg C yr-1), while the largest flux (-1.55 Tg C 600 

yr-1) occurred in 2007. These large differences in the SS annual fluxes are a result of large 601 

interannual changes in the spring drawdown of surface ocean pCO2 (see Fig. 13). However, in 602 

the GoM the large differences in annual flux (+0.17 Tg C yr-1 in 2004 and -0.19 Tg C yr-1 in 603 

2007) are a result of wind speed variability as there are not significant interannual changes in the 604 

surface ocean pCO2 seasonal cycle, as shown in Fig. 13. 605 

 Averaged over the entire eight years, the MAB, GB+NS, and SAB are relatively the 606 

largest sinks of CO2 to the atmosphere (-2.1, -1.0, and -0.9 Tg C yr-1, respectively), while the 607 

GOM is a small source (+0.01 Tg C yr-1) and the SS a relatively small sink (-0.6 Tg C yr-1), 608 

albeit with large changes from year to year.  The east coast uptake (mean over the 8 years) is 4.6 609 

Tg C yr-1, which is at the upper end of the estimates from the binned field measurements with 610 

two different gas transfer parameterizations (4.0 to 4.3 Tg C yr-1), and 3.6 to 4.0 Tg C yr-1 from 611 

the algorithm using monthly climatology inputs (see Table 2). Table 3 shows that the lowest 612 

estimate occur in 2006 (3.4 Tg C yr-1) and the highest in 2007 (5.4 Tg C yr-1). 613 

 The interannual variability in sea-air flux in all regions is mostly due to changes in the 614 

surface ocean pCO2, mainly in response to changes in solubility and biological drawdown due to 615 

variability in SST and phytoplankton production, respectively, and the wind-dependent gas 616 

exchange at the sea-air interface, accounted for by the gas transfer coefficient k660 (in cm hr-1). 617 

From Table 1 we see that the algorithm pCO2 sensitivity to the input parameters varies 618 
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significantly from region to region. In fact, the coefficients of many parameters change sign on a 619 

regional basis. So, in order to evaluate which parameters influenced the resulting estimates of 620 

sea-air flux the most, one needs to examine the yearly changes of these parameters and evaluate 621 

how much influence they have on the pCO2. As an example, there was a significant shift in the 622 

mean annual sea-air flux in the SS from 2005 to 2007 (Table 3 and Fig. 14). In 2005 the SS was 623 

a weak source of atmospheric CO2 (+0.15 Tg C yr-1), while in 2007 it shifted to a relatively 624 

strong CO2 sink (-1.55 Tg C yr-1). This shift was associated with lower SST (-0.8 oC), higher 625 

log10[Chl] (+0.067), and higher k660 (+2.19 cm hr-1) on average in 2007 compared to 2005. Using 626 

the coefficients for SS in Table 1, 8.77 ± 0.26 �atm (oC)-1, -100.32 ± 4.66 �atm (log10[Chl])-1, we 627 

get the following changes in pCO2 in 2007 compared to 2005: -7.1 ± 0.2 �atm from SST and -6.7 628 

± 0.3 �atm from Chl, for a total decrease in surface ocean pCO2 of -13.8 ± 0.4 �atm. Considering 629 

that this is a regionally and annually averaged value, this is a significant change in pCO2 , which, 630 

combined with the increase in k660, is the main reason leading to changes in sea-air flux. 631 

 Time series (2003-2010) of annual mean sea-air CO2 flux averaged for each of the five 632 

regions, each combined with annual means of SST, log10[Chl], and k660, are shown in Fig. 14. 633 

We show log10[Chl] instead of absolute Chl concentration because the log-transformed Chl is the 634 

parameter used by the algorithm. Examination of each of these time series reveals some 635 

interesting interannual changes. The scale of variability for each variable changes from region to 636 

region and it is reflected by adopting different vertical axis ranges for each region. Interestingly, 637 

2006 is a year of transition for all regions north of Cape Hatteras (MAB, GB+NS, GoM, and SS). 638 

In 2006, the highest SST and Chl occur in the GoM and SS, followed by a decrease in SST 639 

reaching a minimum in 2007, which, combined with a peak in k660 resulted in the largest uptake 640 

of CO2 by the ocean in these two regions.  As a result, there was a transition in the sea-air flux in 641 
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the SS from a very weak sink in 2006 (-0.02 Tg C yr-1) to a stronger sink in 2007   (-1.55 Tg C 642 

yr-1). There was an increase of SST from 2007 to 2010 that contributed to a reduction in the 643 

ocean uptake. The sea-air flux interannual variability in the GB+NS, MAB, and SAB was also 644 

largely driven by changes in SST, with warmer years having reduced ocean uptake and colder 645 

years showing an increase in uptake.  646 

 The annual mean time series of sea-air flux for each region (2003-2010), and the total for 647 

the entire east coast, are shown in Fig. 15. The GoM and SS regions were relatively stronger 648 

sinks of CO2 to the atmosphere in 2007 (-0.19 and -1.55 Tg C yr-1, respectively). The annual 649 

uptake of CO2 ranged from -0.51 to -1.12 Tg C yr-1 in the SAB with a mean of -0.89 ± 0.18 Tg C 650 

yr-1 for 2003-2010. The equivalent values for the GB+NS were similar, with a range of -0.73 to   651 

-1.20 Tg C yr-1 and an overall mean of -1.00 ± 0.18 Tg C yr-1. The MAB was the largest sink 652 

with values ranging from -1.73 to -2.43 Tg C yr-1, and an overall mean of -2.12 ± 0.24 Tg C yr-1. 653 

The total sea-air flux (sum of all five regions) ranged from -3.4 to -5.4 Tg C yr-1, with the lowest 654 

uptake in 2006 and the highest in 2007.  655 

 656 

5.0 Summary and Future work 657 

 We reconstructed a monthly climatology of surface ocean pCO2 for the North American 658 

east coast continental shelf and developed regional algorithms to analyze the seasonal and 659 

interannual variability of surface ocean pCO2 and sea-air CO2 flux. A sensitivity analysis of 660 

parameters that influence the surface ocean pCO2 showed that changes in DIC and SST are the 661 

main drivers for the pCO2 seasonal cycle.  Vertical mixing, mixing of low-salinity waters with 662 

shelf water, and biological drawdown are highly influential in the DIC variability. Much larger 663 

seasonal cycle amplitudes of DIC occur in regions north of Cape Hatteras than south of it. The 664 



31 
 

annual sea-air CO2 flux for the entire East Coast derived from the algorithm ranges from -3.4 Tg 665 

C yr-1 (2006) to -5.4 Tg C yr-1 (2007) during the analyzed period (2003-2010). In general, 666 

estimates from the binned data and algorithm are in agreement with previous studies when the 667 

range of uncertainty and interannual variability are taken into account. 668 

 Uncertainties in the estimates of sea-air flux can be reduced by filling the spatial and 669 

temporal gaps in the existing surface ocean pCO2 inventory for the US East Coast. The 670 

limitations of spatial and temporal surface ocean pCO2 data coverage present a challenge in 671 

validating algorithms and biogeochemical model pCO2 and sea-air flux estimates. Improvements 672 

can only be obtained by continuous monitoring of pCO2 and other carbon cycle related variables 673 

in the near shore and shelf regions of the US East coast. As shown in Fig. 3, all regions have 674 

major spatial and temporal gaps in the data coverage.   675 

 In this study, we used a multiple regression approach to convert regional satellite 676 

observed quantities (SST, and Chl) into pCO2. However, the relationship pCO2 = f (SST, Chl, 677 

SSS, time) is empirical and does not represent a unique solution as pCO2 depends on factors 678 

other than local SST and Chl, for instance. Surface waters with identical SST and Chl can 679 

possibly have different pCO2 levels. However, there have been studies that apply the technique 680 

of neural networks for mapping in situ pCO2 data in the open ocean [Friedrich and Oschlies, 681 

2009; Lefèvre et al., 2005; Telszewski et al., 2009]. The advantage of the neural network 682 

approach is that it can recognize and exploit relationships in the data which are not pre-defined 683 

(as in regression techniques) and need to be expressible by an equation. This makes neural 684 

networks particularly suited to mapping relationships that are non-linear and empirical, provided 685 

sufficient data are available to ‘train’ the network. This technique looks promising for mapping 686 

the surface ocean pCO2 in other coastal regions as well.  687 
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 Hales et al. [2012] presented a method for predicting coastal surface-water pCO2 from 688 

remote-sensing data, based on self organizing maps (SOMs) and a nonlinear semi-empirical 689 

model of surface water carbonate chemistry, a method potentially applicable to the coastal 690 

regions in this study. The SOM approach was used to objectively map the sub-regions, while an 691 

entirely different approach was used to develop the pCO2 algorithm within the SOM-defined 692 

sub-regions. The model used simple empirical relationships between carbonate chemistry (DIC 693 

and Alk) and satellite data (SST and Chl). Surface-water pCO2 was calculated from the 694 

empirically-predicted DIC and Alk. This directly incorporated the inherent nonlinearities of the 695 

carbonate system, in a completely mechanistic manner.  696 

  697 
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Appendix A – Additional Sources of Surface Ocean pCO2 not included in the SOCAT Data 698 

A.1 South Atlantic Bight 699 

 Underway surface ocean pCO2 data from the SAB were collected by Dr. Wei-Jun Cai (a 700 

co-author in this study) and co-workers at the Department of Marine Sciences, University of 701 

Georgia. A total of 65,454 underway surface ocean pCO2 records were processed for this study 702 

from six cruises along the SAB continental shelf: 5–16 January 2005, 19–30 March 2005, 27 703 

July to 5 August 2005, 7–17 October 2005, 16–21 December 2005, and 17–27 May 2006. The 704 

SOCAT data set includes the 2005 cruises but not those undertaken in 2006, which were added 705 

to our analysis to include all cruises. In all of the sampling cruises except for the one in 706 

December 2005, the research vessel transected the whole SAB from coastline to about 500-m 707 

water depth. The survey focused on 5 cross-shelf transects that are named E-, D-, C-, B-, and A-708 

transect, respectively from north to south. In December 2005, the ship transected the whole SAB, 709 

but did not cover D- and B-transects and did not go beyond the 200 m isobaths due to limited 710 

ship time. Surface water and atmospheric xCO2 were measured underway during all cruises. Sea 711 

surface temperature (SST) and salinity were recorded continuously with an onboard SeaBird 712 

flow through thermosalinograph. Sea level pressure was recorded using an onboard R.M. Young 713 

barometric pressure sensor. Surface water xCO2 was measured using a LI-COR 7000 infrared 714 

gas analyzer coupled to a gas-water equilibrator. Details of the methodology and accuracy of 715 

instruments used are given in Jiang et al. [2008]. Fig. A-1 shows the data distribution map. 716 

 717 

A.2 Gulf of Maine 718 

 Underway surface ocean pCO2 data from monthly cruises in the southern Gulf of Maine 719 

were obtained from the University of  New Hampshire (UNH) and integrated with the SOCAT 720 

data base. Underway data are measured continuously from pumped surface water for physical, 721 
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chemical, biological and bio-optical properties. The data used in this study consisted of 309,665 722 

surface observations spanning the period of 2004-2010. These data originate from the UNH 723 

Coastal Ocean Observing Center's Coastal Carbon Group, which is an interdisciplinary research 724 

team within UNH-EOS engaged in efforts to observe and model how the Earth's pool of carbon 725 

moves between the land, ocean, and atmosphere with a particular focus on how this carbon 726 

cycling occurs in coastal regions, such as the Gulf of Maine. Dr. Joe Salisbury, a co-author in 727 

this study, is a member of the UNH Coastal Carbon Group. The methodology and 728 

instrumentation details are given in Vandermark et al. [2011]. The precision of the fCO2 729 

measurements was ±3 �atm. Fig. A-2 shows the data distribution map. All underway cruise 730 

tracks are in the GoM, except for a single cruise track from Woods Hole to New York City. 731 

 732 

A. 3 Scotian Shelf 733 

 Underway (UW) surface ocean pCO2 data from transects across the Scotian Shelf, and 734 

high frequency pCO2, SST, SSS and calibrated fluorometer Chl data from the CARIOCA buoy 735 

were obtained from Dalhousie University [Shadwick et al., 2010; Shadwick et al., 2011]. These 736 

data were used to evaluate the algorithm performance on the Scotian Shelf. Hourly, autonomous 737 

observations of surface water pCO2 (μatm), chlorophyll-a fluorescence (FChl), and SST, were 738 

made using a CARIOCA buoy moored roughly 30 km offshore from Halifax, at 44.3o N and 739 

63.3oW, between April 2007 and June 2008. Hourly CARIOCA data were uploaded and 740 

transmitted daily via the ARGOS satellite system. The pCO2 measurements were made by an 741 

automated spectrophotometric technique. A Sea-Bird (SBE 41) conductivity and temperature 742 

sensor was used to measure temperature (◦C) and to determine salinity; chlorophyll-a 743 

fluorescence (μg l-1) was determined by a WET Labs miniature fluorometer (WETstar). Non-744 
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photochemical effects that are related to the intensity of the incoming solar radiation may 745 

decrease FChl up to 80% during the day. This effect can be avoided by using night-time data 746 

which, to a large extent, are free of the effects of non-photochemical quenching, for fluorometer 747 

calibration. Night-time data were taken as a mean FChl between 03:00 and 06:00 UTC (or 11:00 748 

and 02:00 LT); data points were temporally interpolated to match discrete chlorophyll-a 749 

measurements (Chl-a in mg m-3) from monthly or twice monthly occupations at the mooring site. 750 

Chl-a concentration was determined fluorometrically in a Turner Designs fluorometer using the 751 

acid ratio technique for seawater samples collected at 3, 5, or 10m depth. A linear regression (r2 752 

= 0.76, N=29, p < 0.001) was used to determine the relationship between the FChl and Chl-a, and 753 

applied to the CARIOCA fluorescence-derived Chl-a time-series (ChlF in mg m-3). Shadwick et 754 

al. [2010] performed a validation of satellite monthly chlorophyll data by regressing it against 755 

the (night-time calibrated), monthly mean, CARIOCA ChlF time series, (r2 =0.68, N=14, p 756 

<0.002). 757 

 Measurements of pCO2 UW were made by a continuous flow equilibration system in: 758 

October 2006, April, August, and October 2007, and April and October, 2008 on board the 759 

CCGS Hudson. The UW measurements (see distribution map in Fig. 7a) were obtained on 760 

monitoring cruises on the Scotian Shelf (see Shadwick et al., 2011 for details of the field 761 

program). Measurements of pCO2 UW were made by a non-dispersive, infrared spectrometer 762 

(LiCor, LI-7000). The system was located in the aft-laboratory of the ship and the intake depth 763 

was approximately 3m below the water surface. Measurements were made every minute and 764 

used to compute hourly averages. The system was calibrated daily with both a CO2-free 765 

reference gas (N2) and a CO2 calibration gas (328.99 ppm) provided by the US National Oceanic 766 
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and Atmospheric Administration (NOAA). The data were corrected to in-situ water temperature 767 

and to 100% humidity and had an associated uncertainty of less than 1μatm. 768 

 769 
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 977 
 978 
Table 1. Coefficients and statistical data for pCO2 algorithm (Equation 1). The multiple regression coefficients and 
their corresponding standard errors were obtained using the MatLab function ‘regstats’ with t statistics. 

Means and Coefficients SAB MAB GB+NS GoM SS 
To (oC) 23.21 15.27 11.27 10.29 7.34 
So (psu) 35.38 31.64 32.19 31.41 30.58 
�� (days) 123 218 359 343 27 
Chlo (mg m-3) 1.09 1.54 1.62 2.94 1.24 
a (��atm) 378.69 

�1.76 
360.07 
�1.40 

370.66 
�1.84 

373.06 
�1.38 

351.43 
�0.90 

b (��atm) 24.00 
�2.05 

7.03 
�4.82 

37.05 
�2.63 

39.43 
�1.68 

69.31 
�2.39 

c (��atm oC-1) 12.23 
�0.36 

5.20 
�0.47 

6.88 
�0.40 

1.65 
�0.24 

8.77 
�0.26 

d (��atm psu-1) -22.49 
�1.71 

1.11 
�0.61 

-10.95 
�2.33 

-1.34 
�0.83 

1.44 
�0.86 

e (��atm/log10(Chl)) 30.25 
�5.87 

-14.99 
�5.51 

10.05 
�7.67 

-20.65 
�3.83 

-100.32 
�4.66 

r2 0.82 0.55 0.60 0.42 0.74 
RMSE (��atm) 26.7 36.9 32.2 34.6 22.4 
N 356 997 356 847 684 
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Table 2. Sea-air CO2 flux for reference year 2004 from binned data, algorithm for year 2004, and previous studies 
(literature). Uncertainties  for the estimates from the data were obtained as , where STD is the 
standard deviation and N the number of data points. Uncertainties for the sea-air CO2 flux estimates from the 
algorithm were based on the standard deviation of all monthly estimates for the period 2003-2010.  Both specific 
(mol CO2 m-2 yr-1) and total (Tg C yr-1) sea-air fluxes are shown for each region and total for the whole coast. Two 
gas transfer coefficients were used, the polynomial equation of Wanninkhof et al. [2009]  and the quadratic 
dependence version of Ho et al. [2011]  adjusted for steady winds using the nonlinearity coefficients C2 and 
C3.  

Region Area 
1010 m2 

Data 
mol CO2 m-2 yr-1 

Tg C yr-1 

Algorithm 
mol CO2 m-2 yr-1 

Tg C yr-1 

Literature 
mol CO2 m-2 yr-1 

Tg C yr-1 
       

SS 12.82 -1.10 ± 0.25 
-1.69 ± 0.39 

-1.21 ± 0.27 
-1.87 ± 0.42 

-0.39 ± 0.34 
-0.56 ± 0.50 

-0.42 ± 0.36 
-0.60 ± 0.53 

+1.42 ± 0.28 (d) 
+2.19 ± 0.43  

GoM 12.77 +0.11 ± 0.21 
+0.17 ± 0.32 

+0.04 ± 0.22 
+0.06 ± 0.34 

+0.01 ± 0.08 
+0.02 ± 0.12 

+0.01± 0.08 
+0.02 ± 0.12 

+0.38 ± 0.26 (c) 
+0.58 ± 0.40 

GB+NS 5.83 -0.65 ± 0.20 
-0.46 ± 0.14 

-0.71 ± 0.22 
-0.50 ± 0.15 

-1.27 ± 0.23 
-0.79 ± 0.16 

-1.37 ± 0.24 
-0.86 ± 0.16 

- 
- 

MAB 9.31 -0.95 ± 0.24 
-1.06 ± 0.27 

-1.07 ± 0.27 
-1.12 ± 0.30 

-1.58 ± 0.19 
-1.63 ± 0.21 

-1.78 ± 0.19 
-1.83 ± 0.22  

-1.1 ± 0.7 
-1.0 ± 0.6 (a) 

SAB 10.20 -0.79 ± 0.26 
-0.97 ± 0.31 

-0.68 ± 0.24 
-0.83 ± 0.29 

-0.61 ± 0.17 
-0.67 ± 0.20 

-0.67± 0.16 
-0.74 ± 0.20 

-0.48 ± 0.21(b) 
-0.59 ± 0.26  

Total 50.63 -4.01 ± 0.30 -4.26 ± 0.31 -3.63 ± 0.24 -4.01 ± 0.25 - 
 

(a) DeGrandpre [2002]; (b) Jiang et al. [2008]; (c) Vandemark et al. [2011] is 5-year mean (2004-2208)  
but ranging from +0.71 (2005) to -0.11 (2007) mol m-2 yr-1; (d) Shadwick et al. [2011]. Values for (b),  
(c), and (d) were converted from specific to total flux, or mol CO2 m-2 yr-1 to Tg C yr-1 (	12	area	10-12).  

 and  
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Table 3. Sea-air CO2 flux derived from the regional algorithms for 2003-2010. The flux is given in two different 985 
units for each year (mol CO2 m-2 yr-1/Tg C yr-1), and in Tg C yr-1 for the overall 8-year mean and whole coast sum. 986 
The flux was calculated using the gas transfer equation of Ho et al. [2011].  987 
 988 

Year SAB MAB GoM GB+NS SS Sum 
2003 -0.78/-0.90 -2.18/-2.43 +0.002/+0.009 -1.72/-1.20 -0.33/-0.55 -5.07 
2004 -0.75/-0.88 -2.08/-2.31 +0.107/+0.166 -1.72/-1.20 -0.27/-0.39 -4.61 
2005 -0.95/-1.12 -1.92/-2.13 +0.068/+0.108 -1.49/-1.04 +0.18/+0.15 -4.03 
2006 -0.74/-0.88 -1.56/-1.73 -0.052/-0.074 -1.05/-0.73 -0.01/-0.02 -3.43 
2007 -0.43/-0.51 -1.76/-1.95 -0.129/-0.191 -1.71/-1.20 -1.01/-1.55 -5.40 
2008 -0.78/-0.93 -1.72/-1.91 -0.045/-0.062 -1.21/-0.85 -0.55/-0.77 -4.52 
2009 -0.66/-0.76 -1.90/-2.11 -0.024/-0.028 -1.32/-0.92 -0.72/-1.14 -4.96 
2010 -0.91/-1.08 -2.16/-2.41 +0.079/+0.126 -1.21/-0.85 -0.18/-0.40 -4.62 
Mean -0.89±0.18 -2.12±0.24 +0.007±0.112 -1.00±0.18 -0.58±0.52 -4.58 

 989 
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Fig. 1. Regional domains for analysis adapted from Hofmann et al. [2008] and Hofmann et al [2011]. The white 
circles show the locations of the NDBC buoys within each regional domain. The white star shows the location of the 
Sable Island meteorological station and the white square the location of the Carioca buoy.  
 
  



2 
 

 
Fig. 2. Seasonal climatology maps of SST, SSS, and Chl. Upper row: SST composites from MODIS Aqua; middle 
row: SSS composites from World Ocean Data 2009; bottom row: Chl composites from MODIS Aqua. Refer to the 
methods section (3.0) for details. The MODIS SST and Chl seasonal climatologies are based on the period 2002-
2011. The seasons are defined as Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA), and Sep-Oct-Nov 
(SON). 
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Fig. 3. Color-coded SOCAT surface ocean pCO2 cruise tracks (a) and corresponding coastal binned data (b) with 
associated color-coded temporal coverage in months. The highest temporal coverage corresponds to the most 
travelled routes (in orange to red), i.e., most frequent destination ports (Boston, New York, Norfolk, Miami) used by 
the Volunteering Observing Ships. The SOCAT data set also includes transects occupied by research vessels. The 
SS, GoM, GB+NS, MAB and SAB regional boundaries are overlaid as black lines. 
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Fig. 4. Plot of goodness-of-fit statistics for all regional MLRs with incremental addition of corresponding proxy 
parameters. The x-axis shows the RMSE normalized by the maximum attained value among all MLRs, while the y-
axis shows (1-r2). Thus a perfect match between data and MR values would be centered at the origin (0, 0).  
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Fig. 5. From top to bottom: scatter plots (left column) of observed (SOCAT) vs. algorithm (Equation 1) pCO2 
(�atm) for the five regions (black dots all months, green squares monthly ensemble averages). The right column 
shows the mean seasonal plots of the ensemble averages for the equivalent regions. There are no data available for 
the MAB and GB+NS for January. Only data bins with more than six months of coverage were used. 
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Fig. 6. (a) Scatter plot of algorithm versus observed surface ocean pCO2 based 
on observed values not used in the algorithm development (bins with temporal  
coverage less than 6 months). The r2, RMSE, and mean absolute percent  
difference (MAPD) are shown in the legend. (b) Histogram of residuals (observed 
minus algorithm). The red dashed vertical lines represent the standard deviation (±�)  
of the observed pCO2.  
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Fig. 7. (a) Map showing the seven 2ox2o boxes covering the entire Scotian Shelf (SS) region adapted from Shadwick 
et al. [2010]. The contour line is the 200 m isobath. The algorithm and in situ (SOCAT (not shown) and UW 
observations from Dalhousie University cruises) mean surface ocean pCO2 were obtained for each of the seven 
boxes for evaluation purposes. The scatter plot of algorithm versus observed pCO2 for all seven boxes is shown in 
(b) with corresponding statistics in the legend.   
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Fig. 8a. Time series of algorithm mean surface ocean pCO2 (black lines) for boxes 1 through 4 shown in Fig. 7a. The 
corresponding SOCAT (red dots) and Dalhousie UW (blue dots) data are shown for comparison. The blue lines are 
the atmospheric pCO2. See Fig. 7b for statistical evaluation. 
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Fig. 8b. Time series of algorithm mean surface ocean pCO2 (black lines) for boxes 5, 6 and 7 shown in Fig. 7a. The 
corresponding SOCAT (red dots) and Dalhousie UW (blue dots) data are shown for comparison. The blue lines are 
the atmospheric pCO2. See Fig. 7b for statistical evaluation. 
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Fig. 9. Time series of high frequency (hourly) surface ocean pCO2 measured (blue crosses) at the Carioca buoy from 
2007 to 2010, and corresponding algorithm prediction (red crosses) using hourly values of SST, SSS, and calibrated 
fluorometer Chl as inputs (top panel). The scatter plot of observed vs. algorithm pCO2 is shown in the bottom panel. 
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Fig. 10. Seasonal maps of algorithm pCO2, salinity-derived alkalinity from Cai et al. [2010] equations, and DIC 
derived from alkalinity and algorithm pCO2. The seasons are defined as Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), 
Jun-Jul-Aug (JJA), and Sep-Oct-Nov (SON).  
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Fig. 11. Sensitivity of pCO2 seasonal cycle to most influential parameters. Alkalinity  was derived using SSS from 
monthly WOA 2009 salinity data (D. Tomaso personal communication, 2012), spatially interpolated using Kriging, 
and Cai et al. [2010] equations. DIC was derived from algorithm pCO2, alkalinity, WOA SSS, and MODIS SST. 
Refer to text for methodology to derive parameter sensitivity.  
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Fig. 12. Regionally averaged seasonal DIC (black lines and circles) derived from TA (SSS) [Cai et al., 2010], SST 
from MODIS, monthly SSS from WOA 2009 (D. Tomaso personal communication, 2012) spatially interpolated 
using Kriging, and algorithm pCO2. The seasonal mixed layer depth (MLD) is superposed for each region (red lines 
and circles). The red dashed lines represent the mean bottom depth for each region and the thin black lines are the 
annual mean DIC for each region, with the GoM and SAB having the highest values (2022 �mol kg-1) and the MAB 
the lowest (1968 �mol kg-1).  
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Fig. 13. Left panel: Monthly surface ocean pCO2 derived from algorithm (black lines) and atmospheric pCO2 from 
Grifton, NC located at 35.53oN and 77.38oW (superposed blue lines). Right panel: Sea-air CO2 flux derived from 
�pCO2, CCMP winds, and Ho et al. [2011] gas transfer parameterization.  
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Fig. 14. Mean annual sea-air CO2 flux (red lines, Tg C yr-1) combined with SST (oC), log10[Chl] (blue lines) and 
k660 (cm hr-1, blue lines) for all 5 regions 
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Fig.15. Time series of algorithm annual sea-air CO2 flux for all five individual regions and for the entire east coast. 
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            Fig. A-1. Distribution of underway pCO2 tracks in the SAB. 
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Fig. A-2. Map showing the underway pCO2 tracks in the GoM and a single cruise track from 
Woods Hole to New York City. 

 

 

 


