54 research outputs found

    External data for lake parameterization in Numerical Weather Prediction and climate modeling

    Get PDF

    Water Balance and Thermal Regime of Lakes in Antarctic Oases

    Get PDF
    The chapter aims to revise the capabilities of a water balance modelling approach to be applied on climate-related or practical studies of lakes located in specific conditions of Antarctica. The seasonal water balance equation (WBaL) of a lake was suggested for the lakes located in the vicinity of the Antarctic scientific stations: Bellinshausen, Progress and Maitri. First, the methods and models used to evaluate the income and outcome terms of the WBaL from minimal observational datasets are considered. Then the historical observations available on the lakes Kitezh, Priyadarshini, Stepped, Nella, Progress and Reid are described based on the technical reports of the Finnish, Indian and Russian Antarctic research programmes and from open source publications. Finally, practical recommendations on improving temporal hydrological network are formulated to give a simple solution for the seasonal water balance studies of the Lake Priyadarshini

    Modelling experiments on air–snow–ice interactions over KilpisjĂ€rvi, a lake in northern Finland

    Get PDF
    The evolution of snow and ice thicknesses and temperature in an Arctic lake was investigated using two models: a high-resolution, time-dependent model (HIGHTSI) and a quasi-steady two-layer model on top of a lake model (FLake). In situ observations and a Numerical Weather Prediction model (HIRLAM) were used for the forcing data. HIRLAM forecasts, after orography correction, were comparable with the in situ data. Both lake-ice models predicted the ice thickness (accuracy 5 cm), surface temperature (accuracy 2–3 °C in winter, better in spring), and ice-breakup date (accuracy better than five days) well. HIGHTSI was better for ice thickness and ice-breakup date, while FLake gave better freezing date. Snow thickness outcome was worse, in particular for the melting season. Surface temperature was highly sensitive to air temperature, stratification and albedo, and the largest errors (positively biased) resulted in strongly stable conditions

    Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic

    Get PDF
    Climate warming has been more acute in the Arctic than at lower latitudes and this tendency is expected to continue. This generates major challenges for economic activity in the region. Among other issues is the long-term planning and development of socio-economic infrastructure (dams, bridges, roads, etc.), which require climate-based forecasts of the frequency and magnitude of detrimental flood events. To estimate the cost of the infrastructure and operational risk, a probabilistic form of long-term forecasting is preferable. In this study, a probabilistic model to simulate the parameters of the probability density function (PDF) for multi-year runoff based on a projected climatology is applied to evaluate changes in extreme floods for the territory of the Russian Arctic. The model is validated by cross-comparison of the modelled and empirical PDFs using observations from 23 sites located in northern Russia. The mean values and coefficients of variation (CVs) of the spring flood depth of runoff are evaluated under four climate scenarios, using simulations of six climate models for the period 2010–2039. Regions with substantial expected changes in the means and CVs of spring flood depth of runoff are outlined. For the sites located within such regions, it is suggested to account for the future climate change in calculating the maximal discharges of rare occurrence. An example of engineering calculations for maximal discharges with 1 % exceedance probability is provided for the Nadym River at Nadym

    The performance of FLake in the Met Office Unified Model

    Get PDF
    We present results from the coupling of FLake to the Met Office Unified Model (MetUM). The coupling and initialisation are first described, and the results of testing the coupled model in local and global model configurations are presented. These show that FLake has a small statistical impact on screen temperature, but has the potential to modify the weather in the vicinity of areas of significant inland water. Examination of FLake lake ice has revealed that the behaviour of lakes in the coupled model is unrealistic in some areas of significant sub-grid orography. Tests of various modifications to ameliorate this behaviour are presented. The results indicate which of the possible model changes best improve the annual cycle of lake ice. As FLake has been developed and tuned entirely outside the Unified Model system, these results can be interpreted as a useful objective measure of the performance of the Unified Model in terms of its near-surface characteristics

    Improving the lake scheme within a coupled WRF‐lake model in the Laurentian Great Lakes

    Full text link
    In this study, a one‐dimensional (1‐D) thermal diffusion lake model within the Weather Research and Forecasting (WRF) model was investigated for the Laurentian Great Lakes. In the default 10‐layer lake model, the albedos of water and ice are specified with constant values, 0.08 and 0.6, respectively, ignoring shortwave partitioning and zenith angle, ice melting, and snow effect. Some modifications, including a dynamic lake surface albedo, tuned vertical diffusivities, and a sophisticated treatment of snow cover over lake ice, have been added to the lake model. A set of comparison experiments have been carried out to evaluate the performances of different lake schemes in the coupled WRF‐lake modeling system. Results show that the 1‐D lake model is able to capture the seasonal variability of lake surface temperature (LST) and lake ice coverage (LIC). However, it produces an early warming and quick cooling of LST in deep lakes, and excessive and early persistent LIC in all lakes. Increasing vertical diffusivity can reduce the bias in the 1‐D lake but only in a limited way. After incorporating a sophisticated treatment of lake surface albedo, the new lake model produces a more reasonable LST and LIC than the default lake model, indicating that the processes of ice melting and snow accumulation are important to simulate lake ice in the Great Lakes. Even though substantial efforts have been devoted to improving the 1‐D lake model, it still remains considerably challenging to adequately capture the full dynamics and thermodynamics in deep lakes.Key PointsA dynamic lake surface albedo scheme is added to the lake modelThe new lake model produces a more reasonable LST and LIC than the default lake modelIce melting and snow accumulation are important to simulating lake ice in the Great LakesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135995/1/jame20346_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135995/2/jame20346.pd
    • 

    corecore