14 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017 : an analysis for the Global Burden of Disease Study 2017

    Get PDF
    CITATION: Troeger, C. E., et al. 2019. Mortality, morbidity, and hospitalisations due to influenza lower respiratory tract infections, 2017 : an analysis for the Global Burden of Disease Study 2017. Lancet Respiratory Medicine, 7(1):69-89, doi:10.1016/S2213-2600(18)30496-X.The original publication is available at https://www.thelancet.comBackground: Although the burden of influenza is often discussed in the context of historical pandemics and the threat of future pandemics, every year a substantial burden of lower respiratory tract infections (LRTIs) and other respiratory conditions (like chronic obstructive pulmonary disease) are attributable to seasonal influenza. The Global Burden of Disease Study (GBD) 2017 is a systematic scientific effort to quantify the health loss associated with a comprehensive set of diseases and disabilities. In this Article, we focus on LRTIs that can be attributed to influenza. Methods We modelled the LRTI incidence, hospitalisations, and mortality attributable to influenza for every country and selected subnational locations by age and year from 1990 to 2017 as part of GBD 2017. We used a counterfactual approach that first estimated the LRTI incidence, hospitalisations, and mortality and then attributed a fraction of those outcomes to influenza. Findings Influenza LRTI was responsible for an estimated 145 000 (95% uncertainty interval [UI] 99 000–200 000) deaths among all ages in 2017. The influenza LRTI mortality rate was highest among adults older than 70 years (16·4 deaths per 100 000 [95% UI 11·6–21·9]), and the highest rate among all ages was in eastern Europe (5·2 per 100 000 population [95% UI 3·5–7·2]). We estimated that influenza LRTIs accounted for 9 459 000 (95% UI 3 709 000–22 935 000) hospitalisations due to LRTIs and 81 536 000 hospital days (24 330 000–259 851 000). We estimated that 11·5% (95% UI 10·0–12·9) of LRTI episodes were attributable to influenza, corresponding to 54 481 000 (38 465 000–73 864 000) episodes and 8 172 000 severe episodes (5 000 000–13 296 000). Interpretation This comprehensive assessment of the burden of influenza LRTIs shows the substantial annual effect of influenza on global health. Although preparedness planning will be important for potential pandemics, health loss due to seasonal influenza LRTIs should not be overlooked, and vaccine use should be considered. Efforts to improve influenza prevention measures are needed.https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(18)30496-X/fulltext#%20Publisher's versio

    Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990-2019: results from the Global Burden of Disease Study 2019

    No full text
    Background The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across a groups by sex, for 204 countries and territories.Methods In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used dinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466-469, 470.0, 480-482.8, 483.0-483.9, 484.1-484.2, 484.6-484.7, and 487-489 and International Classification of Diseases 10th edition codes A48.1, A70, B97.4 B97.6, 109-115.8, J16 J16.9, J20-121.9, J91.0, P23.0 P23.4, and U04 U04.9. We used the Cause of Death Ensemble modelling strategy to analyse 23109 site-years of vital r *stration data, 825 site-years of sample vital registration data, 1766 site-years of verbal autopsy data, and 681 site-years of mortality surveillance data. We used DisMod-MR 2.1, a Bayesian metaregression tool, to analyse age sex-specific incidence and prevalence data identified via systematic reviews of the literature, population-based survey data, and daims and inpatient data. Additio y, we estimated age sex-specific LRI mortality that is attributable to the independent effects of 14 risk factors.Findings Globally, in 2019, we estimated that there were 257 million (95% uncertainty interval [UI] 240-275) LRI incident episodes in males and 232 million (217-248) in females. In the same year, LRIs accounted for 1.30 million (95% UI 1.18-1.42) male deaths and 1.20 million (1.07-1.33) female deaths. Age-standardised incidence and mortality rates were 1.17 times (95% UI 1.16-1.18) and 1.31 times (95% UI 1.23-1.41) greater in males than in fe es in 2019. Between 1990 and 2019, LRI incidence and mortality rates declined at different rates across age groups and an increase in LRI episodes and deaths was estimated among all adult age groups, with males aged 70 years and older having the highest increase in LRI episodes (126.0% [95% UI 121.4-131.1]) and deaths (100.0% [83.4-115.9]). During the same period, LRI episodes and deaths in children younger than 15 years were estimated to have decreased, and the greatest dedine was observed for LRI deaths in males younger than 5 years (-70.7% [-77.2 to 61.8]). The leading risk factors for LRI mortality varied across age groups and sex. More than half of global LRI deaths in children younger than 5 years were attributable to child wasting (population attributable fraction [PAF] 53.0% [95% UI 37.7-61.8] in males and 56.4% [40.7-65.1] in females), and more than a quarter of LRI deaths among those aged 5-14 years were attributable to household air pollution (PAF 26.0% [95% UI 16.6-35.5] for males and PAF 25.8% [16.3-35.4] for females). PAFs of male LRI deaths attributed to smoking were 20.4% (95% UI 15.4-25.2) in those aged 15-49 years, 305% (24.1-36. 9) in those aged 50-69 years, and 21.9% (16. 8-27. 3) in those aged 70 years and older. PAFs of female LRI deaths attributed to household air pollution were 21.1% (95% UI 14.5-27.9) in those aged 15-49 years and 18 " 2% (12.5-24.5) in those aged 50-69 years. For females aged 70 years and older, the leading risk factor, ambient particulate matter, was responsible for 11-7% (95% UI 8.2-15.8) of LRI deaths.Interpretation The patterns and progress in reducing the burden of LRIs and key risk factors for mortality varied across age groups and sexes. The progress seen in children you - than 5 years was dearly a result of targeted interventions, such as vaccination and reduction of exposure to risk factors. Similar interventions for other age groups could contribute to the achievement of multiple Sustainable Development Goals targets, induding promoting wellbeing at all ages and reducing health inequalities. Interventions, including addressing risk factors such as child wasting, smoking, ambient particulate matter pollution, and household air pollution, would prevent deaths and reduce health disparities.Copyright 2022 The Author(s). Published by Elsevier Ltd

    The Global, Regional, and National Burden of Adult Lip, Oral, and Pharyngeal Cancer in 204 Countries and Territories A Systematic Analysis for the Global Burden of Disease Study 2019

    No full text

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore