222 research outputs found

    Mild Joint Symptoms Are Associated with Lower Risk of Falls than Asymptomatic Individuals with Radiological Evidence of Osteoarthritis

    Get PDF
    Osteoarthritis (OA) exacerbates skeletal muscle functioning, leading to postural instability and increased falls risk. However, the link between impaired physical function, OA and falls have not been elucidated. We investigated the role of impaired physical function as a potential mediator in the association between OA and falls. This study included 389 participants [229 fallers (≥2 falls or one injurious fall in the past 12 months), 160 non-fallers (no history of falls)], age (≥65 years) from a randomized controlled trial, the Malaysian Falls Assessment and Intervention Trial (MyFAIT). Physical function was assessed using Timed Up and Go (TUG) and Functional Reach (FR) tests. Knee and hip OA were diagnosed using three methods: Clinical, Radiological and Self-report. OA symptom severity was assessed using the Western Ontario and McMaster Universities Arthritis Index (WOMAC). The total WOMAC score was categorized to asymptomatic, mild, moderate and severe symptoms. Individuals with radiological OA and ‘mild’ overall symptoms on the WOMAC score had reduced risk of falls compared to asymptomatic OA [OR: 0.402(0.172–0.940), p = 0.042]. Individuals with clinical OA and ‘severe’ overall symptoms had increased risk of falls compared to those with ‘mild’ OA [OR: 4.487(1.883–10.693), p = 0.005]. In individuals with radiological OA, mild symptoms appear protective of falls while those with clinical OA and severe symptoms have increased falls risk compared to those with mild symptoms. Both relationships between OA and falls were not mediated by physical limitations. Larger prospective studies are needed for further evaluation

    Does osteoporosis predispose falls? a study on obstacle avoidance and balance confidence

    Get PDF
    Contains fulltext : 96832.pdf (publisher's version ) (Open Access)BACKGROUND: Osteoporosis is associated with changes in balance and physical performance and has psychosocial consequences which increase the risk of falling. Most falls occur during walking; therefore an efficient obstacle avoidance performance might contribute to a reduction in fall risk. Since it was shown that persons with osteoporosis are unstable during obstacle crossing it was hypothesized that they more frequently hit obstacles, specifically under challenging conditions. METHODS: Obstacle avoidance performance was measured on a treadmill and compared between persons with osteoporosis (n = 85) and the comparison group (n = 99). The obstacle was released at different available response times (ART) to create different levels of difficulty by increasing time pressure. Furthermore, balance confidence, measured with the short ABC-questionnaire, was compared between the groups. RESULTS: No differences were found between the groups in success rates on the obstacle avoidance task (p = 0.173). Furthermore, the persons with osteoporosis had similar levels of balance confidence as the comparison group (p = 0.091). The level of balance confidence was not associated with the performance on the obstacle avoidance task (p = 0.145). CONCLUSION: Obstacle avoidance abilities were not impaired in persons with osteoporosis and they did not experience less balance confidence than the comparison group. These findings imply that persons with osteoporosis do not have an additional risk of falling because of poorer obstacle avoidance abilities

    Delivery of a Small for Gestational Age Infant and Greater Maternal Risk of Ischemic Heart Disease

    Get PDF
    Background: Delivery of a small for gestational age (SGA) infant has been associated with increased maternal risk of ischemic heart disease (IHD). It is uncertain whether giving birth to SGA infant is a specific determinant of later IHD, independent of other risk factors, or a marker of general poor health. The purpose of this study was to investigate the association between delivery of a SGA infant and maternal risk for IHD in relation to traditional IHD risk factors. Methods and Findings: Risk of maternal IHD was evaluated in a population based cross-sectional study of 6,608 women with a prior live term birth who participated in the National Health and Nutrition Examination Survey (1999–2006), a probability sample of the U.S. population. Sequence of events was determined from age at last live birth and at diagnosis of IHD. Delivery of a SGA infant is strongly associated with greater maternal risk for IHD (age adjusted OR; 95 % CI: 1.8; 1.2, 2.9; p = 0.012). The association was independent of the family history of IHD, stroke, hypertension and diabetes (family historyadjusted OR; 95 % CI: 1.9; 1.2, 3.0; p = 0.011) as well as other risk factors for IHD (risk factor-adjusted OR; 95 % CI: 1.7; 1.1, 2.7; p = 0.025). Delivery of a SGA infant was associated with earlier onset of IHD and preceded it by a median of 30 (interquartile range: 20, 36) years. Conclusions: Giving birth to a SGA infant is strongly and independently associated with IHD and a potential risk factor that precedes IHD by decades. A pregnancy that produces a SGA infant may induce long-term cardiovascular changes tha

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Software Performance of the ATLAS Track Reconstruction for LHC Run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Performance and calibration of quark/gluon-jet taggers using 140 fb⁻¹ of pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s=13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    Search for resonant production of dark quarks in the dijet final state with the ATLAS detector

    Get PDF
    This paper presents a search for a new Z′ resonance decaying into a pair of dark quarks which hadronise into dark hadrons before promptly decaying back as Standard Model particles. This analysis is based on proton-proton collision data recorded at s \sqrt{s} s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. After selecting events containing large-radius jets with high track multiplicity, the invariant mass distribution of the two highest-transverse-momentum jets is scanned to look for an excess above a data-driven estimate of the Standard Model multijet background. No significant excess of events is observed and the results are thus used to set 95% confidence-level upper limits on the production cross-section times branching ratio of the Z′ to dark quarks as a function of the Z′ mass for various dark-quark scenarios

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Boronic acids for sensing and other applications - a mini-review of papers published in 2013

    Get PDF
    Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013
    corecore