31 research outputs found

    Holographic Walking Technicolor and Stability of Techni-Branes

    Full text link
    Techni-fermions are added as stacks of D7-anti-D7 techni-branes within the framework of a holographic technicolor model that has been proposed as a realization of walking technicolor. The stability of the embedding of these branes is determined. When a sufficiently low bulk cut-off is provided the fluctuations remain small. For a longer walking region, as would be required in any realistic model of electroweak symmetry breaking, a larger bulk cut-off is needed and in this case the oscillations destabilize.Comment: Latex, 25 pages, 10 figure

    Design Practice and ‘Designing for All’

    Get PDF
    Accepted for publicationIt is essential that all designers with responsibility for the human-machine interface have access to information on the anthropometry and capabilities of the whole population of people who may wish to interact with the design in question. Current databases used by designers typically present only very limited information concerning people who are older and/or disabled. Furthermore, tables of data are known to be largely ineffective and designers prefer to see visualisations of design data. In order to establish the current situation regarding design in relation to the needs of older and disabled people, existing products, procedures and systems were investigated. The objective was to identify current practice and the needs of designers whilst attempting to ‘design for all’. This paper will report on the findings from these interviews to date, which will ultimately lead to a requirements specification to aid design for the needs of older and disabled people

    Dynamic assessment precursors: Soviet ideology, and Vygotsky

    Full text link

    Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12 000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Spectroscopic studies of Manduca sexta and Sesamia nonagrioides chorion protein structure

    No full text
    The secondary structure of Manduca sexta and Sesamia nonagrioides chorion proteins has been studied in intact chorions using laser-Raman and Fourier transform infra-red (FTIR) spectroscopy and in a solution containing extracted and reassembled chorion proteins using circular dichroism (CD) spectroscopy. Laser-Raman and IR spectra suggest the predominance of antiparallel β-pleated sheet structure in intact chorion proteins of both Lepidoptera species. The bands at 1673, 1674 cm-1 (amide I) and 1234-1238 cm-1 (amide III) in the laser-Raman spectra can best be interpreted as resulting from abundant antiparallel β-pleated sheet structure. Analysis of the amide I band suggests that chorion proteins consist of 60-70% antiparallel β-pleated sheet and 30-40% β-turns. Supporting evidence for the prevalence of antiparallel β-pleated sheet in chorion proteins was supplied using FTIR spectroscopy by the observation of a very intense absorption band at 1635 cm-1(amide I) and of a weak band at 1530, 1525 cm-1 (amide II) from chorions of both species. Surprisingly, analysis of the CD spectra of extracted and reassembled chorion proteins suggests that, in solution, they retain a regular secondary structure most probably dominated by β-pleated sheet. We therefore suggest that the prominent regular β-sheet structure of chorion proteins may exist in solution and dictate the aggregation and polymerization process in vivo. © 1995

    Laser-Raman and FT-IR spectroscopic studies of peptide-analogues of silkmoth chorion protein segments

    No full text
    Silkmoth chorion, the proteinaceous major component of the eggshell, with extraordinary mechanical and physiological properties, consists of a complex set of proteins, which have a tripartite structure: a central, evolutionarily conserved, domain and two more variable 'arms'. Peptide-analogues of silkmoth chorion protein central domain segments have been synthesized. Laser-Raman and infrared spectroscopic studies suggest the preponderance of antiparallel β-pleated sheet structure for these peptides, both in solution and in the solid state
    corecore