150 research outputs found
A Monte Carlo study of temperature-programmed desorption spectra with attractive lateral interactions
We present results of a Monte Carlo study of temperature-programmed
desorption in a model system with attractive lateral interactions. It is shown
that even for weak interactions there are large shifts of the peak maximum
temperatures with initial coverage. The system has a transition temperature
below which the desorption has a negative order. An analytical expression for
this temperature is derived. The relation between the model and real systems is
discussed.Comment: Accepted for publication in Phys.Rev.B15, 10 pages (REVTeX), 2
figures (PostScript); discussion about Xe/Pt(111) adde
Lattice Study of Dense Matter with Two Colors and Four Flavors
We present results from a simulation of SU(2) lattice gauge theory with N_f=4
flavors of Wilson fermion and non-zero quark chemical potential mu, using the
same 12^3x24 lattice, bare gauge coupling, and pion mass in cut-off units as a
previous study with N_f=2. The string tension for N_f=4 is found to be
considerably smaller implying smoother gauge field configurations.
Thermodynamic observables and order parameters for superfluidity and color
deconfinement are studied, and comparisons drawn between the two theories.
Results for quark density and pressure as functions of mu are qualitatively
similar for N_f=2 and N_f=4; in both cases there is evidence for a phase in
which baryonic matter is simultaneously degenerate and confined. Results for
the stress-energy tensor, however, suggest that while N_f=2 has a regime where
dilute matter is non-relativistic and weakly-interacting, N_f=4 matter is
relativistic and strongly-interacting for all values of mu above onset.Comment: Horizontal axes of several figures rescaled. Version accepted for
publicatio
A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model
In this paper, we put forward a way to study the nucleon's thermodynamic
properties such as its temperature, entropy and so on, without inputting any
free parameters by human hand, even the nucleon's mass and radius. First we use
the Lagrangian density of the quark gluon coupling fields to deduce the Dirac
Equation of the quarks confined in the gluon fields. By boundary conditions we
solve the wave functions and energy eigenvalues of the quarks, and thus get
energy-momentum tensor, nucleon mass, and density of states. Then we utilize a
hybrid grand canonical ensemble, to generate the temperature and chemical
potentials of quarks, antiquarks of three flovars by the four conservation laws
of the energy and the valence quark numbers, after which, all other
thermodynamic properties are known. The only seemed free paremeter, the nucleon
radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe
Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe
We consider the metric exterior to a charged dilaton black hole in a de
Sitter universe. We study the motion of a test particle in this metric.
Conserved quantities are identified and the Hamilton-Jacobi method is employed
for the solutions of the equations of motion. At large distances from the black
hole the Hubble expansion of the universe modifies the effective potential such
that bound orbits could exist up to an upper limit of the angular momentum per
mass for the orbiting test particle. We then study the phenomenon of strong
field gravitational lensing by these black holes by extending the standard
formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter
metric. Expressions for the various lensing quantities are obtained in terms of
the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected;
references adde
Glueballs and the superfluid phase of Two-Color QCD
We present the first results on scalar glueballs in cold, dense matter using
lattice simulations of two color QCD. The simulations are carried out on a lattice and use a standard hybrid molecular dynamics algorithm for
staggered fermions for two values of quark mass. The glueball correlators are
evaluated via a multi-step smearing procedure. The amplitude of the glueball
correlator peaks in correspondence with the zero temperature chiral transition,
, and the propagators change in a significant way in the
superfluid phase, while the Polyakov loop is mearly insensitive to the
transition. Standard analysis suggest that lowest mass in the gluonic
channel decreases in the superfluid phase, but these observations need to be
confirmed on larger and more elongated lattices These results indicate that a
nonzero density induces nontrivial modifications of the gluonic medium.Comment: 26 pages, 13 figures; discussions and one figure added; to appear in
EPJ
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- âŠ