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Abstract. We present results from a simulation of SU(2) lattice gauge theory with Nf = 4 flavors of Wilson
fermion and non-zero quark chemical potential µ, using the same 123 × 24 lattice, bare gauge coupling,
and pion mass in cut-off units as a previous study [9] with Nf = 2. The string tension for Nf = 4 is found
to be considerably smaller implying smoother gauge field configurations. Thermodynamic observables and
order parameters for superfluidity and color deconfinement are studied, and comparisons drawn between
the two theories. Results for quark density and pressure as functions of µ are qualitatively similar for
Nf = 2 and Nf = 4; in both cases there is evidence for a phase in which baryonic matter is simultaneously
degenerate and confined. Results for the stress-energy tensor, however, suggest that while Nf = 2 has a
regime where dilute matter is non-relativistic and weakly-interacting, Nf = 4 matter is relativistic and
strongly-interacting for all values of µ above onset.

1 Introduction

A first principles QCD-based understanding of the be-
haviour of dense strongly interacting matter would be of
tremendous value, in part because of the theoretical inter-
est in new phases of matter exhibiting properties such as
color superconductivity and crystallisation, and also be-
cause a quantitatively accurate equation of state ε(nq),
p(nq) (where ε is energy density, p pressure and nq quark
density) is a necessary input for the relativistic equations
of stellar structure determining the properties of compact
stellar objects. Lattice simulations, in principle the most
reliable systematic non-perturbative approach to QCD,
are unfortunately unavailable for dense matter, since in
the presence of a quark chemical potential µ 6= 0 biasing
the system to have more quarks than anti-quarks, the Eu-
clidean action is complex-valued making Monte Carlo im-
portance sampling inoperable. Our approach to the prob-
lem is to study QC2D, ie. Yang-Mills plus fundamental
quarks with gauge group SU(2), which can be shown to
have a real positive functional integral measure for an even
number of quark flavors Nf . It is possible using entirely
orthodox lattice QCD simulation methods to generate rep-
resentative gluon field configurations and study thermo-
dynamic properties of this model for arbitrary µ - QC2D
is thus the simplest theory in which dense matter with
long-ranged inter-quark interactions can be systematically
studied.

Previous work has shown that as µ is raised baryonic
matter is induced to form in the ground state at an onset
chemical potential µo = 1

2mπ, since the lightest baryon
in the physical spectrum of QC2D is degenerate with the

pion [1,2,3]. At the same point the U(1)B baryon-number
symmetry of the model is spontaneously broken by a su-
perfluid diquark condensate [2,3,4]. Studies of the hadron
spectrum confirm that in this regime there is a Gold-
stone excitation formed from a superposition of qq and q̄q̄
bound states [5,2,6]. There is also evidence for a change
in the level ordering of π- and ρ-meson states as density in-
creases [7,6]. Subsequent simulations probing higher den-
sities have found evidence for degenerate quark matter and
color deconfinement [8,9]. There have also been interest-
ing studies of the glueball spectrum [10] and the presence
of gauge field fluctuations with non-trivial topology [11,
12] in a dense medium.

It is, however, difficult to assess this body of work sys-
tematically, because the results have been obtained with
differing lattice fermion formulations (staggered, Wilson),
differing numbers of quark flavors (Nf = 2, 4, 8), and even
differing matter representations (fundamental, adjoint).
Moreover, away from the continuum limit (lattice spacing
a → 0) staggered lattice fermions have global invariances
and symmetry breaking patterns distinct from those of the
continuum theory; this has a profound effect in theories
such as QC2D having real or pseudoreal matter represen-
tations, even influencing the nature of the Sign Problem
(see eg. [1]).

In this work we attempt to remedy the situation by
presenting results for Nf = 4 obtained with the same lat-
tice action used in previous studies with Nf = 2 [8,9].
It is intrinsically interesting to examine the influence of
varying the matter content on the theory’s ground state,
especially since Nf/Nc > 1 in this case, although it should
be immediately noted that the first two coefficients of the
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renormalisation group beta-function remain negative, im-
plying the model remains asymptotically-free and confin-
ing for µ, T = 0 1. We will see as µ is varied that some
features of the Nf = 4 theory are qualitatively similar
to those found for Nf = 2, while others, particularly the
behaviour of the stress-energy tensor Tµν , appear qualita-
tively very different. Another important difference is that
for the same bare lattice gauge coupling β and pion mass
mπa (ie. measured in cut-off units), the string tension σa2

is much smaller for Nf = 4. Strictly, since the two lattice
models yield distinct continuum theories, this cannot be
interpreted in terms of a finer lattice; nonetheless the re-
sulting gauge field configurations are markedly smoother
for Nf = 4 than for Nf = 2, implying that the influence
of at least some lattice artifacts will be diminished. In a
follow-up paper [12] we will demonstrate that this makes
the identification of topological excitations much easier to
control, allowing their behaviour in a dense medium to be
probed.

In Sec. 2 we will detail the lattice action used, and
give results for the string tension measured at µ = 0. The
main results for quark density nq(µ), pressure p(µ), energy
density ε(µ) and trace of the stress energy tensor Tµµ(µ)
are presented in Sec. 3, as well as details of both superfluid
and Polyakov line order parameters yielding information
on the physical nature of the matter which forms. We
will find that the main claim of [9], namely that there
is a range of µ in which baryonic matter in QC2D is at
once degenerate (ie. having a well-defined Fermi-surface)
and confined, is supported by the results of the current
study. Both similarities and differences between Nf = 4
and Nf = 2 are discussed in Sec. 4.

2 Simulation Details

The lattice action used, as in previous studies in this se-
ries [8,9], employs Wilson fermions interacting with gauge
fields governed by the Wilson gauge action. In units where
the lattice spacing a = 1,

S =

2
∑

i,j=1

Ψ̄ i
xMij

xy[U ;µ]Ψ j
y − β

Nc

∑

x,ν<λ

trUνλx, (1)

where Uνλ is the oriented product of 4 SU(2)-valued link
fields Uνx around the sides of an elementary plaquette in
the ν-λ plane, and µ is the quark chemical potential. The
fields Ψ and Ψ̄ are 8Nc-component spinors located on the
lattice sites; if we write Ψ i = (ϕ, φ)i, then

M = δij
(

M [U ;µ] κjγ5
−κjγ5 M [U ;−µ]

)

(2)

1 Note that Nf = 4 lies below the perturbative prediction
NBZ

f ≥ 272

49
for the existence of a conformal fixed point.

with M [U ;µ] the standard Wilson fermion matrix given
by

Mxy[U ;µ] = δxy − κ
∑

ν

[

(1 − γν)e
µδν0Uνxδy,x+ν̂

+ (1 + γν)e
−µδν0U †

νyδy,x−ν̂

]

. (3)

With the identifications ψ1 = ϕ, ψ̄1 = ϕ̄, ψ2 = (φ̄Cτ2)
tr ,

ψ̄2 = (Cτ2φ)
tr, where CγµC

−1 = −γ∗µ and τ2 acts on
color, the action (1) is readily seen to be equivalent to two
copies of an action describing a quark isodoublet (ψ1, ψ2)
with the usual coupling to gauge fields, with in addition a
gauge invariant scalar isoscalar diquark coupling (or Ma-
jorana mass term) of the form

κj(−ψ̄1Cγ5τ2ψ̄
tr
2 + ψtr

2 Cγ5τ2ψ1). (4)

A diquark source j 6= 0 mitigates long-wavelength fluctu-
ations and hence critical slowing down in any superfluid
phase characterised by 〈ϕ̄γ5φ〉 6= 0. It explicitly breaks the
global U(1)B symmetry ϕ 7→ eiαϕ, φ 7→ e−iαφ of (1)2. Al-
ternative choices of diquark operator consistent with the
Pauli Exclusion Principle are possible, but in such cases
numerical simulations show no firm evidence for symme-
try breaking leading to superfluidity [13]. In any case, the
“physical” limit j → 0 is potentially as technically and
computationally challenging as the chiral limit in vacuum
QCD.

It is possible to show that detM is real and positive
and hence that the model can be simulated using an ortho-
dox hybrid Monte Carlo algorithm [8]. In this first study
with Nf = 4, our strategy is to compare with results ob-
tained for Nf = 2, using the same 123 × 24 lattice and
bare gauge coupling β = 1.9 [9]. Since in principle the two
theories have distinct physical properties, there is some ar-
bitrariness in identifying an appropriate matching condi-
tion. In QC2D the onset transition at which quark density
first rises from zero signalling the transition from vacuum
to baryonic matter at T = 0 is expected at µo = 1

2mπ [14].
Accordingly we have chosen to match the pion mass mea-
sured in lattice units , ensuring that the onset happens at
a similar value of µa in the two simulations. We varied κ
whilst keeping fixed β = 1.9, µ = j = 0, measured the
pion propagator using a local source and sink, and found
that κ = 0.158 yielded mπa = 0.677(14) in good agree-
ment with the value mπa = 0.68(1) used in the Nf = 2
study [9].

With no further freedom, in order to set the physical
scale we next measured Wilson loops with R × T with
all possible spatial separations R. Fitting W (R, T ) to the
form Ae−V (R)T for aTmin ≥ 5 (see Fig. 1), we use the
Cornell potential

V (R) = C +
b

R
+ σR (5)

2 In the limit j = µ = 0 the full global symmetry group of
the action (1) is Sp(8).
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Fig. 1. The static quark potential from fits to Wilson loops
with aT ≥ 5, together with a fit to the Cornall potential (5).

to extract the string tension σ. We find
√
σa = 0.1096(64),

yielding a lattice spacing a = 0.052(3)fm assuming a phys-
ical string tension (440 MeV)2, about a factor of three
smaller than the value a = 0.186(8)fm found for Nf =
2 [9]. Some insight may be gained by integration of the
renormalisation group beta-function β(g) = −a∂g/∂a:

a = C

(

g2

16π2b0 + b1g2

)−
b1

2b2
0

exp

(

− 8π2

b0g2

)

; (6)

with the two-loop coefficients given by

b0 =
11

3
Nc−

2

3
Nf ; b1 =

34

3
N2

c−
10

3
NcNf−

(

N2
c − 1

Nc

)

Nf .

(7)
Fig. 2 plots the solution (6) for Nc = 2, 3 and Nf = 2, 4.
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Fig. 2. Plot of the RG equation solution (6) for Nc = 2, 3 and
Nf = 2, 4.

Whilst it is difficult to directly match the bare lattice cou-
pling

√

2Nc/β to the Yang-Mills coupling g plotted along
the horizontal axis, it can be seen that with two colors
at the “boosted” value g ≈ 2.9, the effect of doubling the
number of flavors has the same dramatic effect of reducing

a by a factor of three; in fact the constant C in (6) can be
chosen so that the vertical scale of Fig. 2 matches our es-
timates for a made using the string tension σ. For Nc = 3
with the same coupling, by contrast, changing Nf from 2
to 4 reduces a by just 35%. The small lattice spacing at
Nf = 4 is therefore not so surprising, and underlines that
changing the flavor content in QC2D is not as innocent as
might naively be thought. It also challenges our identifica-
tion of a physical scale using the string tension (particu-
larly since we don’t have the Particle Data Group to help
in QC2D). Taking

√
σ = 440MeV yields mπ ≃ 2.6GeV

and the temperature of the lattice T ≃ 160MeV, which
on the face of it makes comparison with the results of [9]
difficult.

Without data at different values of a enabling a contin-
uum extrapolation, the best we can achieve in this inital
study of flavor-rich dense matter is therefore a compari-
son of Nf = 2, 4 in pion-mass units, since the two simu-
lations have matched values of Lsmπ, Ltmπ, and in the
T → 0, j → 0 limits should manifest the onset of baryonic
matter at the same value of µo/mπ (recall also that from
both theoretical [14] and simulational [1] standpoints, the

best way to present data obtained for µ >∼ µo with differ-
ent quark masses uses units of µ/mπ). As a result, the
figures plotted in Sec. 3 all start to exhibit non-trivial be-
haviour at the same point along the µ-axis.

We should bear in mind that at Nf = 4 the gauge
field configurations are likely to be significantly smoother
and hence lattice artifacts smaller. A potential worry is
that the Nf = 4 simulations are much more susceptible
to finite-volume artifacts and thermal effects as a result of
the much smaller values of Ls

√
σ and Lt

√
σ.

3 Numerical Results at µ 6= 0

The action (1) was used to generate between 300 - 500
HMC trajectories of mean length 0.5 for chemical po-
tentials µa ∈ [0.25, 1.2], with diquark source ja = 0.04
throughout. The molecular dynamics timestep needed to
maintain 75% acceptance ranged from dt = 0.004 at µa =
0.25 to dt = 0.002 at µa = 1.0. Fig. 3 shows results for
the primary thermodynamic observable, the quark den-
sity nq(µ) ≡ −∂ lnZ/∂µ, for both Nf = 4 and Nf =
2 [9]. What is actually plotted is the dimensionless ratio
nq/n

latt
SB , where nlatt

SB is the quark density evaluated on the
same 123 × 24 lattice with free massless quarks, ie. with
β = ∞, κ = 1

8 . The purpose of this is to compensate for
both finite-volume effects and lattice artifacts [8]. Note
that for T = 0 in the thermodynamic and continuum lim-
its,

ncont
SB (µ) =

NfNc

3π2
µ3, (8)

characteristic of a degenerate system with EF = kF = µ.
The most striking feature of Fig. 3 is the qualitative

similarity of the Nf = 2 and Nf = 4 data when ex-
pressed in cut-off units. In both cases nq/n

latt
SB rises sharply

from near the theoretical onset at µo ≈ 1
2mπ = 0.34a−1
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Fig. 3. nq/n
latt

SB and p/plattSB vs. µ/mπ for Nf = 2, 4.

to a maximum at µ/mπ ≈ 0.6 before falling. This non-
monotonic behaviour is predicted in chiral perturbation
theory (χPT) [14,8], which treats the matter forming at
onset as a Bose-Einstein condensate of deeply bound scalar
isoscalar diquark pairs. In fact beyond the maximum, χPT
predicts the ratio to be monotonically falling, proportional
to µ−2 as µ → ∞. By contrast, at a value µ = µQ ≈
0.75mπ the measured ratio levels off; moreover, for Nf = 4

the ratio is close to unity over the range 0.75 <∼ µ/mπ
<∼ 1.0.

Finally, for µ > µD ≈ 1.0mπ the ratio starts to rise again.
In [9] the behaviour for µ ∈ (µQ, µD) was interpreted

as a regime where the fermionic nature of the quarks has
become manifest, resulting in the formation of a Fermi
surface only weakly perturbed by diquark condensation
(see below). In other words, the threshold value µQ corre-
sponds to a BEC/BCS crossover. The new data at Nf =
4 strengthens this interpretation, since the ratio is now
so close to one; indeed nq/n

latt
SB seems to approach unity

from above as a → 0. Since, however, care must be ex-
ercised when extrapolating to the continuum limit using
data from distinct theories, and also because the necessary
j → 0 extrapolation is still to be done, we cannot say at
this stage whether any physical significance should be at-
tached to the differing heights of the peaks at µ/mπ = 0.6.
The flatness of the Nf = 4 data in this regime does how-
ever increase our confidence in the rather ad hoc procedure
for mitigating lattice artifacts by taking the ratio of inter-
acting to free theories, which can only strictly be justified
if a continuum limit is taken.

Fig. 3 also plots the pressure p for both theories, ob-
tained by integrating the Maxwell relation nq = ∂p/∂µ.
For the lattice data we have implemented this via the for-
mula [8]

p

plattSB

(µ) =

∫ µ

µo

ncont

SB

nlatt

SB

(µ′)nq(µ
′)dµ′

∫ µ

µo
ncont
SB (µ′)dµ′

, (9)

with the integrals estimated by an extended trapezoidal
rule. Since the data for p derive from those for nq, most
of the qualitative comments made above apply here also.

We note that the Nf = 4 curve is smoother, and that
once again the ratio p/pSB is close to unity in the range
µ ∈ (µQ, µD).

0.25 0.5 0.75 1 1.25 1.5 1.75 2
µ/mπ

0

0.1

0.2

0.3

0.4

0.5
<qq>/µ2 (Ν

f
=4)

4<L> (N
f
=4)

<qq>/µ2
 (N

f
=2)

4<L> (N
f
=2)

Fig. 4. 〈qq〉/µ2 and rescaled Polyakov line vs. µ/mπ for Nf =
2, 4.

In order to characterise the properties of the different
regions better, in Fig. 4 we plot two further important ob-
servables, the superfluid order parameter 〈qq〉 ≡ κ

2 〈ϕ̄γ5φ−
φ̄γ5ϕ〉, and the Polyakov line 〈L〉 = 1

Nc
tr〈∏Lt

t=1 U0;x,t〉.
Once again, the results for Nf = 4 are qualitatively very
similar to those found for Nf = 2. Note that 〈qq〉 is strictly
only an order parameter in the limit j → 0; we choose to
plot the ratio 〈qq〉/µ2 since for a degenerate system in
which superfluidity arises as a result of BCS condensa-
tion the order parameter is expected to scale as the area
of the Fermi surface via 〈qq〉 ∝ ∆BCSµ

2, where ∆BCS is
the superfluid gap. Fig. 4 confirms that this is indeed the
case for µ ∈ (µQ, µD); the data for Nf = 4 being flatter
than those for Nf = 2, although both manifest a shallow
minimum at µ/mπ ≈ 0.95. This suggests the inequality

∆
Nf=4
BCS a < ∆

Nf=2
BCS a. (10)

Whilst this may signal a physical difference between the
two theories, the influence of lattice artifacts, or indeed the
opening up of other more favoured condensation channels
in the flavor-rich case, cannot yet be eliminated.

Fig. 4 also shows a sharp transition between 〈L〉 ≈ 0
and 〈L〉 > 0 at µD ≈ 1.0mπ. This transition approxi-
mately coincides with the upturn in nq/n

latt
SB observed in

Fig. 3. Since 〈L〉 ∼ exp(−fq/T ), where fq is the free en-
ergy of a static isolated color source, we interpret µD as
the chemical potential at which color deconfinement takes

place. It is striking that µ
Nf=2
D /mπ and µ

Nf=4
D /mπ appear

to be identical; we attribute the difference in magnitude of
〈L〉 for µ > µD to the smoother gauge fields for Nf = 4,
resulting in a smaller downwards renormalisation of the
Polyakov line [15].

We therefore recover for QC2D with Nf = 4 the same
intriguing result found for Nf = 2 [9]; namely that for low
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temperatures T ≪ µ, µD > µQ, implying that there is a
phase with the thermodynamic properties of degenerate
quark matter, but in which color is confined. The cur-
rent result is if anything stronger than that of [9] because
nq(µ) approaches the free quark result much more closely
as a result of the smoother gauge fields. Such a phase
is reminiscent of the confined, chirally-symmetric quarky-
onic phase originally discussed in the context of large-Nc

gauge theories [16]. Unfortunately our use of Wilson lat-
tice fermions, which have no chiral symmetry away from
the limit κ→ κc, precludes a discussion of whether chiral
symmetry is restored for µ > µQ at present.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
µ/mπ

-5

0

5

10

15

20

ε
q
/ε

SB

N
f
=4

N
f
=2

Fig. 5. εq/ε
latt

SB vs. µ/mπ for Nf = 2, 4.

So far we have found a close similarity between Nf = 2
and Nf = 4. This does not carry over to the quark energy
density εq, defined here by

εq = κ

Nf
∑

i=1

〈

ψ̄i
x(γ0 − 1)eµU0xψ

i
x+0̂

−

ψ̄i
x(γ0 + 1)e−µU †

0x−0̂
ψi
x−0̂

〉

. (11)

Fig. 5 plots εq/ε
latt
SB versus µ for Nf = 2, 4. Note that a

vacuum contribution ε0q evaluated at µ = 0 must be sub-
tracted from both interacting and free data; for Nf = 4
this correction ε0qa

4 = 0.3724(10). Even after this additive
correction there is still a multiplicative renormalisation re-
quired by a µ-independent factor known as a Karsch coef-
ficient [17]. Non-perturbative values for Karsch coefficients
are still to be determined for QC2D, but the shapes of the
curves are in principle correct up to discretisation errors.
Fig. 5 shows a big difference at low values of µ between
Nf = 2, where εq/ε

latt
SB has a peak considerably larger than

that predicted by χPT [8,9], and Nf = 4, where the ra-
tio actually starts negative and rises monotonically with
µ. A negative value of εq is not forbidden a priori, but
the requirement for positivity of the total energy density
certainly constrains the contribution εg from the gluons

(see below). For µ >∼ µD ε
Nf=2
q /εlattSB ≈ 2 becomes ap-

proximately constant; ε
Nf=4
q /εlattSB approaches this value

from below, and for µ/mπ
>∼ 1.5 the two models appear

to coincide up to the unknown Karsch correction.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
µ/mπ

0

2

4

6

8 N
f
=4

N
f
=2

Fig. 6. The unrenormalised quark contribution to the trace
anomaly κ−1Tr(11− 〈ψ̄ψ〉) vs. µ/mπ for Nf = 2, 4.

A related quantity is the quark contribution to the
trace of the stress-energy tensor (Tµµ)q, given by

(Tµµ)q = a
∂κ

∂a
× 1

κ
(4NfNc − 〈ψ̄ψ〉). (12)

With data from only one lattice spacing, we are currently
unable to estimate the beta-function; Fig. 6 plots raw
values of κ−1Tr(11 − 〈ψ̄ψ〉) for Nf = 2, 4, normalised to
two quark flavors for ease of comparison, and including
the necessary vacuum subtraction. Qualitatively they have
very different behaviour for µ < µD, and suggest that

(Tµµ)
Nf=2
q and (Tµµ)

Nf=4
q differ even in sign in this regime.

Note that χPT predicts Tµµ > 0 for µo < µ <
√
3µo [8].

Since Tµµ = ε− 3p for isotropic matter, the negative sign

of (Tµµ)
Nf=4
q is consistent with the negative value of εq for

small µ reported in the previous paragraph. Once µ >∼ µD,
both models exhibit a strong upward trend, suggesting
that quarks dominate Tµµ in the deconfined phase.

Finally we present results for local gluonic observables.
In a non-Lorentz invariant system such as one with µ 6= 0
it is helpful to define

✷s =
1

3Nc

∑

i<j

〈trUijx〉; ✷t =
1

3Nc

∑

x

∑

i

〈trU0ix〉. (13)

We then consider in Fig. 7 the difference, proportional to
the gluon energy density

εg = 3Zβ(✷t −✷s), (14)

where Z is another as yet undetermined Karsch coefficient
(assumed unity in the figure), and in Fig. 8 the average
plaquette related to the gluon component of the stress-
energy tensor via

(Tµµ)g = −a∂β
∂a

× 3β(✷s +✷t). (15)
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Fig. 7. εg/µ
4 vs. µ/mπ for Nf = 2, 4.
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Fig. 8. The unrenormalised gluon contribution to the trace
anomaly 3β(✷s + ✷t) vs. µ/mπ for Nf = 2, 4.

For the gluon energy density (Fig. 7) we have no an-
alytic expectation from either free field theory or χPT.
As in previous work, we plot the dimensionless quantity

εg/µ
4; modulo the Karsch coefficient its value for µ <∼ µQ

is approximately constant and similar in magnitude for
Nf = 2, 4 (at the smallest µ the errors are hard to con-

trol), but for µ >∼ µD the ratio increases faster for Nf = 4,
and has essentially doubled by µ/mπ = 1.5. For (Tµµ)g
(Fig. 8) we note that again a vacuum subtraction must

be applied. It is clear that there is a regime µo
<∼ µ <∼ µD

where (Tµµ)
Nf=2
g is positive, before turning over to become

negative at large µ; by contrast (Tµµ)
Nf=4
g < 0 through-

out. It is not yet clear whether the sharp upward kink at
µ/mπ = 1.3 is physical, or merely a discretisation artifact.

The data of Figs. 6,8 taken together imply a major
qualitative difference between Nf = 2 and Nf = 4: in
the former case, Tµµ > 0 for all µ, which in particular
is consistent with the existence of a non-relativistic de-
scription with ε≫ p for µ >∼ µo. For Nf = 4 by contrast,
Tµµ < 0 for µ < µD (we are unable to make a firm state-
ment at this point about the deconfined phase due to the

absence of the beta-functions), implying that the matter
which forms at onset is already strongly-interacting and
relativistic.

4 Discussion

In this paper we have presented the first exploratory re-
sults for flavor-rich baryonic matter withNf = 4 in QC2D.
Since available resources have restricted us to a single
lattice spacing, hopping parameter and diquark source
strength, we have chosen to match the simulation to a pre-
vious study of Nf = 2 on the same lattice size with the
same value of mπa [9], implying the same onset chemical
potential µoa measured in lattice units. Accordingly the
comparison between the two theories is best performed us-
ing observables measured in units ofmπ. Since σ

Nf=4a2 <
σNf=2a2, we expect the lattice gauge fields to be much
smoother in the flavor-rich case, although that renders re-
sults more susceptible to finite-volume and thermal correc-
tions due to the corresponding reduction in Ls

√
σ, Lt

√
σ.

One particular concern in the latter case is that the static
potential V (R) used to calibrate the lattice could actu-
ally be underestimated due to thermal screening. Another
caveat which must eventually be addressed is control over
the extrapolation to continuum a → 0 and zero source
j → 0 limits, currently being addressed for Nf = 2 [18].

Let us cite one example of a potential issue in the
current study, the total energy density ε. If we make the
most optimistic assumption that the Karsch coefficients
are approximately unity, and that both j → 0 and a → 0
extrapolations will not change the results much, then the
data of Figs. 5,7 suggest that for µ ∼ µo with Nf = 4
ε/µ4 = εq/µ

4 + εg/µ
4 ≈ −0.7 + 0.13 < 0, which is clearly

unphysical.
We also note that at µ/mπ = 1.76, the largest chemi-

cal potential studied, the ratio n
Nf=4
q /nsat = 0.32, where

nsat = 2NfNc is the saturation density obtained when
every lattice site is maximally occupied by fermionic de-
grees of freedom; hence we might be concerned that in
this high-density regime the results are susceptible to sat-
uration artifacts. In this light, the superfluid condensate
in Fig. 4 and gluon contribution to the stress-energy ten-
sor in Fig. 8 are especially troubling, since both show a
sharp kink at µ/mπ = 1.3, for which we currently have no
explanation.

Bearing these caveats in mind, let us review the prin-
cipal results. Fig. 3 for nq, p for Nf = 2, 4 expressed as
fractions of the free-field results, demonstrates that both
models display a qualitatively similar sequence of tran-
sitions as µ is increased. For Nf = 4 there is a range
0.75 < µ/mπ < 1.0 where nq/n

latt
SB ≈ 1, implying the exis-

tence of a well-defined Fermi surface. Further study will be
needed to establish whether the difference in the height of
this plateau results from the diminished impact of lattice
artifacts in the Nf = 4 simulation, or a genuine physical
difference between the two theories. Still, the enhanced
flatness of the Nf = 4 plateau and the plausibility of the
resulting physical picture increases our confidence in the
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slightly ad hoc procedure we have used to compensate for
discretisation artifacts.

Another result is the confirmation of the major find-
ing of [9], namely that µD > µQ, or in other words, for
both Nf = 2 and 4 there is a range of µ where degener-
ate quark matter remains color-confined. It will be very
interesting to elucidate the nature of the deconfined phase
further, since at first sight it bears little resemblance to
thermal deconfinement. For instance, Fig. 7 suggests that

the gluon energy density rises smoothly for µ >∼ µD, with
εg/µ

4 increasing by at most a factor of two over its value
near onset.

Finally, the most interesting and unexpected feature of
the new simulation is the big difference between Nf = 2, 4
for the quark contributions to the energy density (Fig. 5)
and stress-energy tensor (Fig. 6). For moderate µ both

ε
Nf=4
q and (Tµµ)

Nf=4
q are negative; this result is self con-

sistent and independent of the value of the relevant Karsch
coefficient, though as discussed above could potentially al-
ter as the limits a → 0, j → 0 are taken. The disparity
between Nf = 2 and 4 however, and of each with the pre-
dictions of χPT [8], is striking. It suggests very different
physical descriptions in the low-density regime: as µ →
µo+ the Nf = 2 theory appears to be a non-relativistic
BEC formed of weakly-interacting tightly-bound diquark
bosons, consistent with χPT [14] and yielding Tµµ > 0,
whereas with Nf = 4 the matter appears to be relativistic
and strongly-interacting for all µ > µo.

This project was enabled with the assistance of IBM Deep
Computing. S.K. was supported by the National Research Foun-
dation of Korea grant funded by the Korea government (MEST)
No. 2010-0022219.
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