54 research outputs found

    Music’s Potential Effects On Surgical Performance

    Get PDF
    Music in the OR is highly prevalent, with most facilities being equipped with a stereo system. The role of music on surgical performance and subsequent patient outcomes has been highly debated in the literature. This review will attempt to elucidate the positive as well as deleterious effects music may have on the surgical team

    Variation of the character of spin-orbit interaction by Pt intercalation underneath graphene on Ir(111)

    Get PDF
    Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).-- et al.The modification of the graphene spin structure is of interest for novel possibilities of application of graphene in spintronics. The most exciting of them demand not only high value of spin-orbit splitting of the graphene states, but non-Rashba behavior of the splitting and spatial modulation of the spin-orbit interaction. In this work we study the spin and electronic structure of graphene on Ir(111) with intercalated Pt monolayer. Pt interlayer does not change the 9.3×9.3 superlattice of graphene, while the spin structure of the Dirac cone becomes modified. It is shown that the Rashba splitting of the π state is reduced, while hybridization of the graphene and substrate states leads to a spin-dependent avoided-crossing effect near the Fermi level. Such a variation of spin-orbit interaction combined with the superlattice effects can induce a topological phase in graphene.The work was partially supported by grants of Saint Petersburg State University for scientific investigations (Grants No. 11.38.271.2014, No. 15.61.202.2015 and No. 11.37.634.2013) and Russian Foundation for Basic Research (RFBR) projects (No. 13-02-91327). We acknowledge the financial support of the University of Basque Country UPV/EHU (Grant No. GIC07-IT-756-13), the Departamento de Educacion del Gobierno Vasco, and the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2010-19609-C02-01), the Spanish Ministry of Economy and Competitiveness MINECO (Grant No. FIS2013-48286-C2-1-P), and the Tomsk State University Competitiveness Improvement Program.Peer Reviewe

    Variation of the character of spin-orbit interaction by Pt intercalation underneath graphene on Ir(111)

    Get PDF
    The modification of the graphene spin structure is of interest for novel possibilities of application of graphene in spintronics. The most exciting of them demand not only high value of spin-orbit splitting of the graphene states, but non-Rashba behavior of the splitting and spatial modulation of the spin-orbit interaction. In this work we study the spin and electronic structure of graphene on Ir(111) with intercalated Pt monolayer. Pt interlayer does not change the 9.3×9.3 superlattice of graphene, while the spin structure of the Dirac cone becomes modified. It is shown that the Rashba splitting of the π state is reduced, while hybridization of the graphene and substrate states leads to a spin-dependent avoided-crossing effect near the Fermi level. Such a variation of spin-orbit interaction combined with the superlattice effects can induce a topological phase in graphene

    Specific features of the electronic, spin, and atomic structures of a topological insulator Bi2Te2.4Se0.6

    Get PDF
    The specific features of the electronic and spin structures of a triple topological insulator Bi2Te2.4Se0.6, which is characterized by high-efficiency thermoelectric properties, have been studied with the use of angular- and spin-resolved photoelectron spectroscopy and compared with theoretical calculations in the framework of the density functional theory. It has been shown that the Fermi level for Bi2Te2.4Se0.6 falls outside the band gap and traverses the topological surface state (the Dirac cone). Theoretical calculations of the electronic structure of the surface have demonstrated that the character of distribution of Se atoms on the Te–Se sublattice practically does not influence the dispersion of the surface topological electronic state. The spin structure of this state is characterized by helical spin polarization. Analysis of the Bi2Te2.4Se0.6 surface by scanning tunnel microscopy has revealed atomic smoothness of the surface of a sample cleaved in an ultrahigh vacuum, with a lattice constant of ~4.23 Å. Stability of the Dirac cone of the Bi2Te2.4Se0.6 compound to deposition of a Pt monolayer on the surface is shown.This study was supported by the Ministry of Education and Science of the Russian Federation, the St. Petersburg State University (project nos. 11.38.271.2014 and 15.61.202.2015), and the Russian Foundation for Basic Research (project nos. 12-02-00226, 13-02-91327, 14-08-31110, and 13-02-12110). The research was also performed at the Resource Center “Physical Methods of Surface Investigation” at St. Petersburg State University. We are also grateful to collaborators of the Helmholtz-Zentrum (Berlin) for financial and technical support.Peer reviewe

    Site- and spin-dependent coupling at the highly ordered h-BN/Co(0001) interface

    Get PDF
    Using photoelectron diffraction and spectroscopy, we explore the structural and electronic properties of the hexagonal boron nitride (h-BN) monolayer epitaxially grown on the Co(0001) surface. Perfect matching of the lattice parameters allows formation of a well-defined interface where the B atoms occupy the hollow sites while the N atoms are located above the Co atoms. The corrugation of the h-BN monolayer and its distance from the substrate were determined by means of R-factor analysis. The obtained results are in perfect agreement with the density functional theory (DFT) predictions. The electronic structure of the interface is characterized by a significant mixing of the h-BN and Co states. Such hybridized states appear in the h-BN band gap. This allows to obtain atomically resolved scanning tunneling microscopy (STM) images from the formally insulating 2D material being in contact with ferromagnetic metal. The STM images reveal mainly the nitrogen sublattice due to a dominating contribution of nitrogen orbitals to the electronic states at the Fermi level. We believe that the high quality, well-defined structure and interesting electronic properties make the h-BN/Co(0001) interface suitable for spintronic applications.L.V.Ya. acknowledges the RSF (Grant No. 16-42-01093). A.V.T., V.O.S., K.A.B., O.Yu.V., and D.Yu.U. acknowledge St. Petersburg State University for research Grant No. 11.65.42.2017. M.V.K. and I.I.O. acknowledge the RFBR (Grant No. 16-29-06410). C.L. acknowledges the DFG (Grant Nos. LA655-17/1 and LA655-19/1).Peer reviewe

    Impact of Co atoms on the electronic structure of Bi2Te3 and MnBi2Te4 topological insulators

    Get PDF
    This work is devoted to an experimental investigation of the electronic structure of the surface of topological insulators of various stoichiometry during the adsorption of Co atoms. Changes in the surface electronic structure of Bi2Te3 and MnBi2Te4 systems upon deposition of Co atoms at various temperatures have been studied using the methods of angle-resolved photoemission spectroscopy, as well as X-ray photoelectron spectroscopy. It is suggested that binding of the adsorbed Co atoms to the substrate surface modifies Dirac point position. The observed changes are associated with the possible formation of magnetic Co-containing ordered surface alloys.This work was supported by the St. Petersburg State University, grant no. 73028629, the Russian Science Foundation, grant no. 18-12-00062, the Russian Foundation for Basic Research, grant nos. 20-32-70127, 21-52-12024, and 18-29-12094, the Science Development Foundation of the President of Azerbaijan, grant no. EIF-BGM-4-RFTF-1/2017-21/04/1-M-02, and in the framework of the state assignment of Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, and the Rzhanov Institute of Semiconductors Physics, Siberian Branch of the Russian Academy of Sciences.Peer reviewe

    Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study

    Get PDF
    Recently discovered intrinsic antiferromagnetic topological insulator MnBi2Te4 presents an exciting platform for realization of the quantum anomalous Hall effect and a number of related phenomena at elevated temperatures. An important characteristic making this material attractive for applications is its predicted large magnetic gap at the Dirac point (DP). However, while the early experimental measurements reported on large DP gaps, a number of recent studies claimed to observe a gapless dispersion of the MnBi2Te4 Dirac cone. Here, using micro(μ)-laser angle-resolved photoemission spectroscopy, we study the electronic structure of 15 different MnBi2Te4 samples, grown by two different chemists groups. Based on the careful energy distribution curves analysis, the DP gaps between 15 and 65 meV are observed, as measured below the Néel temperature at about 10–16 K. At that, roughly half of the studied samples show the DP gap of about 30 meV, while for a quarter of the samples the gaps are in the 50 to 60 meV range. Summarizing the results of both our and other groups, in the currently available MnBi2Te4 samples the DP gap can acquire an arbitrary value between a few and several tens of meV. Furthermore, based on the density functional theory, we discuss a possible factor that might contribute to the reduction of the DP gap size, which is the excess surface charge that can appear due to various defects in surface region. We demonstrate that the DP gap is influenced by the applied surface charge and even can be closed, which can be taken advantage of to tune the MnBi2Te4 DP gap size.The authors acknowledge support by the Saint Petersburg State University Grant No. ID 73028629, Russian Science Foundation Grant No. 18-12-00062 in part of the photoemission measurements and total analysis of the results, Grant No. 18-12-00169-p in part of the electronic band structure calculations and Grant No. 20-42-08002 in part of analysis of magnetic properties and Science Development Foundation under the President of the Republic of Azerbaijan Grant No. EI F-BGM-4-RFTF1/2017-21/04/1-M-02. M.M.O. acknowledges the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-I00). K.K. and O.E.T. acknowledge the support from state assignment of IGM SB RAS and ISP SB RAS.Peer reviewe

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore