458 research outputs found

    Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural rubber is a biopolymer with exceptional qualities that cannot be completely replaced using synthetic alternatives. Although several key enzymes in the rubber biosynthetic pathway have been isolated, mainly from plants such as <it>Hevea brasiliensis</it>, <it>Ficus spec. </it>and the desert shrub <it>Parthenium argentatum</it>, there have been no <it>in planta </it>functional studies, e.g. by RNA interference, due to the absence of efficient and reproducible protocols for genetic engineering. In contrast, the Russian dandelion <it>Taraxacum koksaghyz</it>, which has long been considered as a potential alternative source of low-cost natural rubber, has a rapid life cycle and can be genetically transformed using a simple and reliable procedure. However, there is very little molecular data available for either the rubber polymer itself or its biosynthesis in <it>T. koksaghyz</it>.</p> <p>Results</p> <p>We established a method for the purification of rubber particles - the active sites of rubber biosynthesis - from <it>T. koksaghyz </it>latex. Photon correlation spectroscopy and transmission electron microscopy revealed an average particle size of 320 nm, and <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy confirmed that isolated rubber particles contain poly(<it>cis</it>-1,4-isoprene) with a purity >95%. Size exclusion chromatography indicated that the weight average molecular mass (<inline-formula><graphic file="1471-2091-11-11-i1.gif"/></inline-formula>w) of <it>T. koksaghyz </it>natural rubber is 4,000-5,000 kDa. Rubber particles showed rubber transferase activity of 0.2 pmol min<sup>-1 </sup>mg<sup>-1</sup>. <it>Ex vivo </it>rubber biosynthesis experiments resulted in a skewed unimodal distribution of [1-<sup>14</sup>C]isopentenyl pyrophosphate (IPP) incorporation at a <inline-formula><graphic file="1471-2091-11-11-i1.gif"/></inline-formula>w of 2,500 kDa. Characterization of recently isolated <it>cis</it>-prenyltransferases (CPTs) from <it>T. koksaghyz </it>revealed that these enzymes are associated with rubber particles and are able to produce long-chain polyprenols in yeast.</p> <p>Conclusions</p> <p><it>T. koksaghyz </it>rubber particles are similar to those described for <it>H. brasiliensis</it>. They contain very pure, high molecular mass poly(<it>cis</it>-1,4-isoprene) and the chain elongation process can be studied <it>ex vivo</it>. Because of their localization on rubber particles and their activity in yeast, we propose that the recently described <it>T. koksaghyz </it>CPTs are the major rubber chain elongating enzymes in this species. <it>T. koksaghyz </it>is amenable to genetic analysis and modification, and therefore could be used as a model species for the investigation and comparison of rubber biosynthesis.</p

    Threonine 150 phosphorylation of keratin 5 is linked to EBS and regulates filament assembly, cell cycle and oxidative stress response

    Get PDF
    A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII–/–) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis

    A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity.

    Get PDF
    Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation

    Damages of the tibial post in constrained total knee prostheses in the early postoperative course – a scanning electron microscopic study of polyethylene inlays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of the risk of fracture of the polyethylene (PE) inlay in constrained total knee prostheses.</p> <p>Methods</p> <p>Three unused and seven polyethylene inlays that had been implanted in a patient's knee for an average of 25.4 months (min 1.1 months, max 50.2 months) were investigated using scanning electron microscopy (SEM). All inlays were of the same type and size (Genesis II constrained, Smith & Nephew). The PE surface at the transition from the plateau to the post was analyzed.</p> <p>Results</p> <p>The unused inlays had fissure-free surfaces. All inlays that had been implanted in a patient's knee already had distinct fissures at the front and backside of the post.</p> <p>Conclusion</p> <p>The fissures of the transition from the plateau to the post indicated a loading-induced irreversible mechanical deformation and possibly cause the fracture of the inlay.</p

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
    corecore