9 research outputs found

    Photodynamic Therapy as Novel Treatment for Halitosis in Adolescents: A Case Series Study

    Get PDF
    Introduction: Halitosis is a common problem that affects a large portion of the population worldwide. The origin of this condition is oral in 90% of cases and systemic in 10% of cases. The foul odor is caused mainly by volatile sulfur compounds produced by Gram-negative bacteria. However, it has recently been found that anaerobic Gram-positive bacteria also produce hydrogen sulfide (H2S) in the presence of amino acids, such as cysteine. Light with and without the combination of chemical agents has been used to induce therapeutic and antimicrobial effects. In photodynamic therapy, the antimicrobial effect is confined to areas covered by the photosensitizing dye. The aim of the present case series study was to evaluate the antimicrobial effect of photodynamic therapy on halitosis in adolescents through the analysis of volatile sulfur compounds measured using a sulfide meter (Halimeter®).Methods: Five adolescents aged 14 to 16 years were evaluated using a sulfide meter before and one hour after photodynamic therapy, which involved the use of methylene blue 0.005% on the middle third and posterior thirds of the dorsum of the tongue and nine points of laser irradiation in the red band (660 nm) with an energy dose of 9 J, power output of 100 mW and 90-seconds exposure time.Results: A 31.8% reduction in the concentration of volatile sulfur compounds was found in the comparison of the initial and final readings. The statistically significant reduction (p = 0.0091) led to an absence of halitosis following treatment (mean: 58.2 ppb).Conclusion: Photodynamic therapy seems to be effective on reduction the concentration of volatile sulfur compounds.Considering the positive effects of photodynamic therapy in this case series, further studies involving microbiological analyses should be conducted to allow comparisons of the results

    [Ru(bpy)2(NO)SO3](PF6), a Nitric Oxide Donating Ruthenium Complex, Reduces Gout Arthritis in Mice

    Get PDF
    Monosodium urate crystals (MSU) deposition induces articular inflammation known as gout. This disease is characterized by intense articular inflammation and pain by mechanisms involving the activation of the transcription factor NFκB and inflammasome resulting in the production of cytokines and oxidative stress. Despite evidence that MSU induces iNOS expression, there is no evidence on the effect of nitric oxide (NO) donors in gout. Thus, the present study evaluated the effect of the ruthenium complex donor of NO {[Ru(bpy)2(NO)SO3](PF6)} (complex I) in gout arthritis. Complex I inhibited in a dose-dependent manner MSU-induced hypersensitivity to mechanical stimulation, edema and leukocyte recruitment. These effects were corroborated by a decrease of histological inflammation score and recruitment of Lysm-eGFP+ cells. Mechanistically, complex I inhibited MSU-induced mechanical hypersensitivity and joint edema by triggering the cGMP/PKG/ATP-sensitive K (+) channels signaling pathway. Complex I inhibited MSU-induced oxidative stress and pro-inflammatory cytokine production in the knee joint. These data were supported by the observation that complex I inhibited MSU-induced NFκB activation, and IL-1β expression and production. Complex I also inhibited MSU-induced activation of pro-IL-1β processing. Concluding, the present data, to our knowledge, is the first evidence that a NO donating ruthenium complex inhibits MSU-induced articular inflammation and pain. Further, complex I targets the main physiopathological mechanisms of gout arthritis. Therefore, it is envisaged that complex I and other NO donors have therapeutic potential that deserves further investigation

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Avaliação da relação entre disfunção temporomandibular e dimensão vertical de oclusão em crianças de 7 A 12 anos

    No full text
    Objetivo verificar se existe relação entre a presença de disfunção temporomandibular (DTM) relacionada à variabilidade da dimensão vertical de oclusão em crianças e adolescentes na faixa etária de 7 a 12 anos. Métodos foram avaliadas 96 crianças e adolescentes do Instituto Rogacionista em São Paulo. A pesquisa diagnóstica da disfunção temporomandibular foi por meio do Índice de Helkimo e exame clínico posterior. Para a mensuração dos dados referentes à dimensão vertical foram empregadas as distâncias comissura labial - canto externo do olho e base do nariz – mento. A comparação dos valores médios das medidas antropométricas entre os gêneros e os grupos com e sem disfunção temporomandibular foi realizada empregando-se a análise de variância (ANOVA) complementada pelo teste least significance diference. Resultados a dimensão vertical de oclusão demonstrou medidas distintas nas crianças e adolescentes em todas as faixas etárias avaliadas, foram observadas alterações significantes dessa medida nas idades de 10 e 12 anos de ambos os gêneros. Conclusão pode -se concluir que na amostra estudada houve relação direta entre a presença  de DTM e  Dimensão vertical de oclusão (DVO), correlação positiva entre as medidas  comissura labial – canto do olho externo e Násio – Mento no sexo feminino e alterações significantes na dimensão vertical de oclusão nas idades de 10 e 12 anos para ambos os sexos

    Bibliography

    No full text

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data

    Emotional processing in Parkinson's disease and anxiety: an EEG study of visual affective word processing

    Get PDF
    A general problem in the design of an EEG-BCI system is the poor quality and low robustness of the extracted features, affecting overall performance. However, BCI systems that are applicable in real-time and outside clinical settings require high performance. Therefore, we have to improve the current methods for feature extraction. In this work, we investigated EEG source reconstruction techniques to enhance the extracted features based on a linearly constrained minimum variance (LCMV) beamformer. Beamformers allow for easy incorporation of anatomical data and are applicable in real-time. A 32-channel EEG-BCI system was designed for a two-class motor imagery (MI) paradigm. We optimized a synchronous system for two untrained subjects and investigated two aspects. First, we investigated the effect of using beamformers calculated on the basis of three different head models: a template 3-layered boundary element method (BEM) head model, a 3-layered personalized BEM head model and a personalized 5-layered finite difference method (FDM) head model including white and gray matter, CSF, scalp and skull tissue. Second, we investigated the influence of how the regions of interest, areas of expected MI activity, were constructed. On the one hand, they were chosen around electrodes C3 and C4, as hand MI activity theoretically is expected here. On the other hand, they were constructed based on the actual activated regions identified by an fMRI scan. Subsequently, an asynchronous system was derived for one of the subjects and an optimal balance between speed and accuracy was found. Lastly, a real-time application was made. These systems were evaluated by their accuracy, defined as the percentage of correct left and right classifications. From the real-time application, the information transfer rate (ITR) was also determined. An accuracy of 86.60 ± 4.40% was achieved for subject 1 and 78.71 ± 0.73% for subject 2. This gives an average accuracy of 82.66 ± 2.57%. We found that the use of a personalized FDM model improved the accuracy of the system, on average 24.22% with respect to the template BEM model and on average 5.15% with respect to the personalized BEM model. Including fMRI spatial priors did not improve accuracy. Personal fine- tuning largely resolved the robustness problems arising due to the differences in head geometry and neurophysiology between subjects. A real-time average accuracy of 64.26% was reached and the maximum ITR was 6.71 bits/min. We conclude that beamformers calculated with a personalized FDM model have great potential to ameliorate feature extraction and, as a consequence, to improve the performance of real-time BCI systems
    corecore