56 research outputs found

    Kombinasi Format Factory, U-lead dan Microsoft Office Powerpoint dalam Upaya Meningkatkan Kualitas Media Pembelajaran

    Get PDF
    Peserta didik mempunyai gaya belajar yang berbeda-beda. Gaya belajar tersebut meliputi auditori, visual dan kinestetik (VAK). Seorang guru harus mampu memenuhi kebutuhan masing-masing gaya belajar peserta didik tersebut. Salah satu cara yang dapat dilakukan adalah dengan menggunakan media pembelajaran berbasis VAK. Media pembelajaran berbasis VAK dapat dipenuhi dengan menyisipkan file video di dalamnya. Selain itu, penggunaan file video sebagai media pembelajaran mendukung implementasi pembelajaran saintifik pada kurikulum 2013. Namun, belum semua guru memiliki kemampuan untuk mengemas file video tersebut dalam bentuk media pembelajaran. Tujuan penelitian ini adalah untuk meningkatkan kemampuan guru-guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran berbasis VAK dengan kombinasi software Format Factory, U-Lead dan PowerPoint. Hasil penelitian menunjukkan bahwa terjadi peningkatan kemampuan para guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran. Peningkatan kemampuan guru-guru tersebut berada di atas target yang direncanakan. Rerata peningkatan kemampuan guru-guru di SMA Negeri 1 Teras 7,87% di atas target, sedangkan di SMA Negeri 1 Boyolali 9,58% di atas target. Kata kunci: Media Pembelajaran, Format Factory, U-Lead, PowerPoint Students have different learning styles. Learning styles include visual learners, auditory learners, and kinesthetic learners. A teacher must be able to fulfill the needs of individual students\u27 learning styles. One way that can be applied is using Visual, Audio and Kinesthetic (VAK) learning media based. VAK-learning media based can be created by inserting video files on it. In addition, using video file as a learning media can support the implementation of scientific learning on the 2013 curriculum. However, not all teachers have the ability to use video files into a learning media. The purpose of this study is to improve the teachers\u27 ability at SMA Negeri 1 Teras and SMAN 1 Boyolali on making VAK-learning media based with a combination of Format Factory, U-Lead and PowerPoint software. The results showed that the teachers\u27 ability on making VAK-learning media based was increased. Increased the teachers\u27 ability was above planned target score. The mean score of the teachers\u27 ability at SMA Negeri 1 Teras 7.87% above the target, while at SMAN 1 Boyolali 9.58% above the target

    A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery

    Get PDF
    The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for analyses ranging from the inference of the impacts of somatic variants to pathway analysis to biomarker development and subtype discovery. The ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-RNA) challenge was a crowd-sourced effort to benchmark methods for RNA isoform quantification and fusion detection from bulk cancer RNA sequencing (RNA-seq) data. It concluded in 2018 with a comparison of 77 fusion detection entries and 65 isoform quantification entries on 51 synthetic tumors and 32 cell lines with spiked-in fusion constructs. We report the entries used to build this benchmark, the leaderboard results, and the experimental features associated with the accurate prediction of RNA species. This challenge required submissions to be in the form of containerized workflows, meaning each of the entries described is easily reusable through CWL and Docker containers at https://github.com/SMC-RNA-challenge. A record of this paper's transparent peer review process is included in the supplemental information

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore