87 research outputs found
Validation of the Scientific Program for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) was designed to conduct a
survey covering 14,000 deg over five years to constrain the cosmic
expansion history through precise measurements of Baryon Acoustic Oscillations
(BAO). The scientific program for DESI was evaluated during a five month Survey
Validation (SV) campaign before beginning full operations. This program
produced deep spectra of tens of thousands of objects from each of the stellar
(MWS), bright galaxy (BGS), luminous red galaxy (LRG), emission line galaxy
(ELG), and quasar target classes. These SV spectra were used to optimize
redshift distributions, characterize exposure times, determine calibration
procedures, and assess observational overheads for the five-year program. In
this paper, we present the final target selection algorithms, redshift
distributions, and projected cosmology constraints resulting from those
studies. We also present a `One-Percent survey' conducted at the conclusion of
Survey Validation covering 140 deg using the final target selection
algorithms with exposures of a depth typical of the main survey. The Survey
Validation indicates that DESI will be able to complete the full 14,000 deg
program with spectroscopically-confirmed targets from the MWS, BGS, LRG, ELG,
and quasar programs with total sample sizes of 7.2, 13.8, 7.46, 15.7, and 2.87
million, respectively. These samples will allow exploration of the Milky Way
halo, clustering on all scales, and BAO measurements with a statistical
precision of 0.28% over the redshift interval , 0.39% over the redshift
interval , and 0.46% over the redshift interval .Comment: 42 pages, 18 figures, accepted by A
The Early Data Release of the Dark Energy Spectroscopic Instrument
\ua9 2024. The Author(s). Published by the American Astronomical Society. The Dark Energy Spectroscopic Instrument (DESI) completed its 5 month Survey Validation in 2021 May. Spectra of stellar and extragalactic targets from Survey Validation constitute the first major data sample from the DESI survey. This paper describes the public release of those spectra, the catalogs of derived properties, and the intermediate data products. In total, the public release includes good-quality spectral information from 466,447 objects targeted as part of the Milky Way Survey, 428,758 as part of the Bright Galaxy Survey, 227,318 as part of the Luminous Red Galaxy sample, 437,664 as part of the Emission Line Galaxy sample, and 76,079 as part of the Quasar sample. In addition, the release includes spectral information from 137,148 objects that expand the scope beyond the primary samples as part of a series of secondary programs. Here, we describe the spectral data, data quality, data products, Large-Scale Structure science catalogs, access to the data, and references that provide relevant background to using these spectra
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transientâs position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Overview of the instrumentation for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) embarked on an ambitious 5 yr survey in 2021 May to explore the nature of dark energy with spectroscopic measurements of 40 million galaxies and quasars. DESI will determine precise redshifts and employ the baryon acoustic oscillation method to measure distances from the nearby universe to beyond redshift z > 3.5, and employ redshift space distortions to measure the growth of structure and probe potential modifications to general relativity. We describe the significant instrumentation we developed to conduct the DESI survey. This includes: a wide-field, 3.°2 diameter prime-focus corrector; a focal plane system with 5020 fiber positioners on the 0.812 m diameter, aspheric focal surface; 10 continuous, high-efficiency fiber cable bundles that connect the focal plane to the spectrographs; and 10 identical spectrographs. Each spectrograph employs a pair of dichroics to split the light into three channels that together record the light from 360â980 nm with a spectral resolution that ranges from 2000â5000. We describe the science requirements, their connection to the technical requirements, the management of the project, and interfaces between subsystems. DESI was installed at the 4 m Mayall Telescope at Kitt Peak National Observatory and has achieved all of its performance goals. Some performance highlights include an rms positioner accuracy of better than 0.âł1 and a median signal-to-noise ratio of 7 of the [O ii] doublet at 8 Ă 10â17 erg sâ1 cmâ2 in 1000 s for galaxies at z = 1.4â1.6. We conclude with additional highlights from the on-sky validation and commissioning, key successes, and lessons learned
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later
designated GW170817) with merger time 12:41:04 UTC was observed through
gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray
burst (GRB 170817A) with a time delay of ⌠1.7 {{s}} with respect to
the merger time. From the gravitational-wave signal, the source was
initially localized to a sky region of 31 deg2 at a
luminosity distance of {40}-8+8 Mpc and with
component masses consistent with neutron stars. The component masses
were later measured to be in the range 0.86 to 2.26 {M}ÈŻ
. An extensive observing campaign was launched across the
electromagnetic spectrum leading to the discovery of a bright optical
transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC
4993 (at ⌠40 {{Mpc}}) less than 11 hours after the merger by the
One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
optical transient was independently detected by multiple teams within an
hour. Subsequent observations targeted the object and its environment.
Early ultraviolet observations revealed a blue transient that faded
within 48 hours. Optical and infrared observations showed a redward
evolution over âŒ10 days. Following early non-detections, X-ray and
radio emission were discovered at the transientâs position ⌠9
and ⌠16 days, respectively, after the merger. Both the X-ray and
radio emission likely arise from a physical process that is distinct
from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with
the source were found in follow-up searches. These observations support
the hypothesis that GW170817 was produced by the merger of two neutron
stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and
a kilonova/macronova powered by the radioactive decay of r-process
nuclei synthesized in the ejecta.</p
Assuring quality
- This paper considers how the quality of higher education in general, and dental education in particular, is assessed.
-It then considers how the principles of quality assurance have been applied to dental distance learning.
-It concludes that, to date, it appears that relatively little work has been done to formulate quality guidelines for e-learning in dentistry.
All those involved in education have a strong motivation to ensure that all its aspects, including content and teaching practice, are of the highest standard. This paper describes how agencies such as the Quality Assurance Agency for Higher Education (QAA) and the General Dental Council (GDC) have established frameworks and specifications to monitor the quality of education provided in dental schools and other institutes that provide education and training for dentists and dental care professionals (DCPs). It then considers quality issues in programme and course development, techniques for assessing the quality of education, including content and presentation, and the role of students. It goes on to review the work that has been done in developing quality assessment for distance learning in dentistry. It concludes that, to date, much of the work on quality applies to education as a whole and that the assessment of the quality of e-learning in dentistry is in its infancy
Identifying quality educational apps: Lessons from âtopâ mathematics apps in the Apple App store
- âŠ