44 research outputs found

    Mindful "Vitality in Practice": an intervention to improve the work engagement and energy balance among workers; the development and design of the randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern working life has become more mental and less physical in nature, contributing to impaired mental health and a disturbed energy balance. This may result in mental health problems and overweight. Both are significant threats to the health of workers and thus also a financial burden for society, including employers. Targeting work engagement and energy balance could prevent impaired mental health and overweight, respectively.</p> <p>Methods/Design</p> <p>The study population consists of highly educated workers in two Dutch research institutes. The intervention was systematically developed, based on the Intervention Mapping (IM) protocol, involving workers and management in the process. The workers' needs were assessed by combining the results of interviews, focus group discussions and a questionnaire with available literature. Suitable methods and strategies were selected resulting in an intervention including: eight weeks of customized mindfulness training, followed by eight sessions of e-coaching and supporting elements, such as providing fruit and snack vegetables at the workplace, lunch walking routes, and a buddy system. The effects of the intervention will be evaluated in a RCT, with measurements at baseline, six months (T1) and 12 months (T2). In addition, cost-effectiveness and process of the intervention will also be evaluated.</p> <p>Discussion</p> <p>At baseline the level of work engagement of the sample was "average". Of the study population, 60.1% did not engage in vigorous physical activity at all. An average working day consists of eight sedentary hours. For the Phase II RCT, there were no significant differences between the intervention and the control group at baseline, except for vigorous physical activity. The baseline characteristics of the study population were congruent with the results of the needs assessment. The IM protocol used for the systematic development of the intervention produced an appropriate intervention to test in the planned RCT.</p> <p>Trial registration number</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2199">NTR2199</a></p

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore