13 research outputs found

    Genome wide association study of Preserved Ratio Impaired Spirometry (PRISm)

    Get PDF
    Background: Preserved Ratio Impaired Spirometry (PRISm) is defined as FEV1 &lt;80% predicted, FEV1/FVC ≥0.70. PRISm is associated with respiratory symptoms and co-morbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated co-morbidities.Methods: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected SNPs reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait Linkage Disequilibrium score regression to estimate genome-wide genetic correlation between PRISM and pulmonary and extra-pulmonary traits. Phenome-wide association studies of top SNPs was performed. Results: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg = 0.62, p-value &lt;0.001) was observed, and genetic correlation with type II diabetes (rg = 0.12, p-value 0.007). PheWAS showed that 18 of 22 signals were associated with diabetic traits and 7 with blood pressure traits.Discussion: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals; rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B) have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extra-pulmonary co-morbidity.<br/

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    North American tree migration paced by climate in the West, lagging in the East

    No full text
    Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.ISSN:0027-8424ISSN:1091-649

    Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE).

    Get PDF
    An increasing recognition has emerged of the complexities of the global health agenda-specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberation

    Continent-wide tree fecundity driven by indirect climate effects

    No full text
    Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.ISSN:2041-172

    Continent-wide tree fecundity driven by indirect climate effects.

    No full text
    Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates
    corecore