192 research outputs found

    Presentation of the Same Glycolipid by Different CD1 Molecules

    Get PDF
    Five CD1 molecules are expressed in humans and it is unclear whether they have specialized or redundant functions. We found that sulfatide is a promiscuous CD1-binding ligand and have isolated T cell clones that are specific for sulfatide and restricted by distinct CD1 molecules. These clones have been used to compare the capacity of different CD1 to present the same glycolipid, to induce effector functions, and to form persistent immunogenic complexes. CD1a, CD1b, and CD1c molecules similarly load sulfatide on the cell surface without processing, and prime Th1 and Th2 responses. Stimulation by sulfatide-loaded CD1a persists much longer than that by CD1b and CD1c in living cells. Use of recombinant soluble CD1a confirmed the prolonged capacity to stimulate T cells. Moreover, other glycosphingolipids bind to all CD1, which suggests the presence of additional promiscuous ligands. Thus, group I CD1 molecules present an overlapping set of self-glycolipids, even though they are quite divergent from an evolutionary point of view

    Dyslipidemia inhibits Toll-like receptor–induced activation of CD8α-negative dendritic cells and protective Th1 type immunity

    Get PDF
    Environmental factors, including diet, play a central role in influencing the balance of normal immune homeostasis; however, many of the cellular mechanisms maintaining this balance remain to be elucidated. Using mouse models of genetic and high-fat/cholesterol diet–induced dyslipidemia, we examined the influence of dyslipidemia on T cell and dendritic cell (DC) responses in vivo and in vitro. We show that dyslipidemia inhibited Toll-like receptor (TLR)–induced production of proinflammatory cytokines, including interleukin (IL)-12, IL-6, and tumor necrosis factor-α, as well as up-regulation of costimulatory molecules by CD8α− DCs, but not by CD8α+ DCs, in vivo. Decreased DC activation profoundly influenced T helper (Th) cell responses, leading to impaired Th1 and enhanced Th2 responses. As a consequence of this immune modulation, host resistance to Leishmania major was compromised. We found that oxidized low-density lipoprotein (oxLDL) was the key active component responsible for this effect, as it could directly uncouple TLR-mediated signaling on CD8α− myeloid DCs and inhibit NF-κB nuclear translocation. These results show that a dyslipidemic microenvironment can directly interfere with DC responses to pathogen-derived signals and skew the development of T cell–mediated immunity

    Changes to cholesterol trafficking in macrophages by Leishmania parasites infection

    Get PDF
    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse‐chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low‐density lipoproteins indicated that retention of this source of cholesterol is increased in parasite‐containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann–Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites’ membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA‐encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol‐dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses

    Increased Circulating T Cell Reactivity to GM1 Ganglioside in Patients with Guillain-Barre Syndrome

    Get PDF
    This study was performed to determine whether increased ganglioside-specific T cell reactivity can be detected in the peripheral blood of patients with Guillain-Barre syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). T cell responsiveness to the gangliosides GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed in peripheral blood mononuclear cells from untreated GBS patients (57), CIDP patients (43), patients with other peripheral neuropathies (55) and healthy control subjects (74) in a standard 6-day proliferation assay. Increased T cell reactivity to GM1 occurred in GBS patients compared to healthy controls and patients with other neuropathies. There was increased reactivity to GM3 in GBS patients compared to patients with other neuropathies but not compared to healthy controls. The frequencies of increased T cell reactivity to GM1 and GM3 in CIDP patients were intermediate between those of GBS patients and controls. We suggest that T cell reactivity to gangliosides might play a contributory role in the pathogenesis of GBS and perhaps CIDP

    Increased circulating T cell reactivity to GM3 and GQ1b gangliosides in primary progressive multiple sclerosis

    Get PDF
    We have previously shown that patients with primary progressive multiple sclerosis (MS) have significantly elevated plasma levels of antibody to GM3 ganglioside compared to patients with relapsing-remitting MS, healthy subjects and patients with other neurological diseases. Anti-GM3 antibody levels were elevated also in patients with secondary progressive MS but to a lesser extent than in primary progressive MS. As gangliosides are particularly enriched in the axonal membrane, these findings suggested that antiganglioside immune responses might contribute to the axonal damage in progressive forms of MS. The present study was performed to determine whether peripheral blood T cell responses to GM3 are also increased in progressive MS. Blood was collected from 98 untreated patients with MS (40 with relapsing-remitting, 27 with secondary progressive and 31 with primary progressive MS), 50 healthy subjects and 24 patients with other disorders of the CNS, and reactivity to GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed by 6-day T cell proliferation assays. Increased T cell reactivity to GM3 and GQ1b occurred significantly more often in patients with primary progressive MS than in healthy subjects and patients with other CNS diseases. These findings suggest that ganglioside-specific T cells may contribute to the axonal damage in primary progressive MS. (C) 2002 Elsevier Science Ltd. All rights reserved

    CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice

    Get PDF
    Group 1 CD1 (CD1a, CD1b, and CD1c)–restricted T cells recognize mycobacterial lipid antigens and are found at higher frequencies in Mycobacterium tuberculosis (Mtb)–infected individuals. However, their role and dynamics during infection remain unknown because of the lack of a suitable small animal model. We have generated human group 1 CD1 transgenic (hCD1Tg) mice that express all three human group 1 CD1 isoforms and support the development of group 1 CD1–restricted T cells with diverse T cell receptor usage. Both mycobacterial infection and immunization with Mtb lipids elicit group 1 CD1–restricted Mtb lipid–specific T cell responses in hCD1Tg mice. In contrast to CD1d-restricted NKT cells, which rapidly respond to initial stimulation but exhibit anergy upon reexposure, group 1 CD1–restricted T cells exhibit delayed primary responses and more rapid secondary responses, similar to conventional T cells. Collectively, our data demonstrate that group 1 CD1–restricted T cells participate in adaptive immune responses upon mycobacterial infection and could serve as targets for the development of novel Mtb vaccines

    Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling

    Get PDF
    Chimeric antigen receptor (CAR) tonic signaling, defined as spontaneous activation and release of proinflammatory cytokines by CAR-T cells, is considered a negative attribute because it leads to impaired antitumor effects. Here, we report that CAR tonic signaling is caused by the intrinsic instability of the mAb single-chain variable fragment (scFv) to promote self-aggregation and signaling via the CD3z chain incorporated into the CAR construct. This phenomenon was detected in a CAR encoding either CD28 or 4-1BB costimulatory endodomains. Instability of the scFv was caused by specific amino acids within the framework regions (FWR) that can be identified by computational modeling. Substitutions of the amino acids causing instability, or humanization of the FWRs, corrected tonic signaling of the CAR, without modifying antigen specificity, and enhanced the antitumor effects of CAR-T cells. Overall, we demonstrated that tonic signaling of CAR-T cells is determined by the molecular instability of the scFv and that computational analyses of the scFv can be implemented to correct the scFv instability in CAR-T cells with either CD28 or 4-1BB costimulation

    Analysis of the CD1 Antigen Presenting System in Humanized SCID Mice

    Get PDF
    CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34+ hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a+ cells with a dendritic morphology were present in the thymic medulla. CD1+ cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens
    corecore