86 research outputs found

    Tratamiento farmacológico en odontología. ¿Cuándo afecta la seguridad del paciente?

    Get PDF
    Patient safety is a quality dimension in health care, because there is a certain degree of danger in each step of the process; focusing on the use of medicines, the most harmful problems are related to errors in the selection of medicines and their correlation with the diagnosis and in the unjustified use of them. The objective of this study was to analyze drug prescription situations in relation to patient safety. It is a prospective, observational and descriptive study; of a sample made up of all the prescriptions received during 12 continuous months, prescribed by dentists for oral pathologies, from a social service institute, in the city of Corrientes, Argentina. The prescription situations were analyzed into adequate and inadequate, and the latter were subdivided into: a) excessive prescription or undermedication and b) inappropriate prescription in relation to the indicated medication or dose, with the diagnosis. A quantitative analysis of the prescribed drugs was performed with descriptive statistics and a qualitative analysis through quality parameters such as the number of active ingredients that the drug contains and the "potential therapeutic intrinsic value" (PTIV). Results: 518 prescriptions were prescribed by dentists for oral pathologies, 20% presented situations of unsafe use, 17 prescriptions with excessive prescriptions or submedication and 86 prescriptions with an inappropriate relationship between the medication and the diagnosis. In conclusion, we have detected prescriptions with a high potential to produce adverse effects, as well as situations of lack of knowledge about therapeutic indications, with unnecessary use of antibiotics.La seguridad del paciente es una dimensión de calidad en atención de salud, porque hay cierto grado de peligrosidad en cada paso del proceso; centrándonos en el uso de medicamentos los problemas más perjudiciales están relacionados a errores en la selección de los medicamentos y su correlación con el diagnóstico y en la utilización injustificada de los mismos. El objetivo de este trabajo fue analizar situaciones de prescripción de medicamentos en relación a la seguridad del paciente. Se trata de un estudio prospectivo, observacional y descriptivo; de una muestra constituida por todas las recetas recibidas durante 12 meses continuos, prescriptas por odontólogos para patologías bucodentales, de un instituto de servicio social, de la ciudad de Corrientes, Argentina. Las situaciones de prescripción se analizaron y clasificaron en adecuadas e inadecuadas, y estas últimas fueron subdivididas en: a) prescripción excesiva o submedicación y b) prescripción inapropiada en relación entre medicamento o dosis indicadas, con el diagnóstico. Se realizó el análisis cuantitativo de los medicamentos prescritos con estadística descriptiva y un análisis cualitativo a través de parámetros de calidad como número de principios activos que contiene el medicamento y el “valor intrínseco terapéutico potencial” (VITP). Resultados: de 518 recetas prescriptas por odontólogos para patologías bucodentales, el 20% presentaban situaciones de uso inseguro, 17 recetas con prescripciones excesivas o submedicación y 86 recetas con inadecuada relación entre el medicamento y diagnóstico. En conclusión hemos detectado prescripciones con alto potencial de producir efectos adversos, como así también situaciones de falta de conocimiento sobre indicaciones terapéuticas, con uso innecesario de antibióticos

    Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse

    Get PDF
    Birth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown. Here, we demonstrated that birth by C-section results in marked but transient changes in microbiome composition in the mouse, in particular, the abundance of Bifidobacterium spp. was depleted in early life. Mice born by C-section had enduring social, cognitive, and anxiety deficits in early life and adulthood. Interestingly, we found that these specific behavioral alterations induced by the mode of birth were also partially corrected by co-housing with vaginally born mice. Finally, we showed that supplementation from birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that stimulates the growth of bifidobacteria, reverses selective behavioral alterations in C-section mice. Taken together, our data link the gut microbiota to behavioral alterations in C-section-born mice and suggest the possibility of developing adjunctive microbiota-targeted therapies that may help to avert long-term negative consequences on behavior associated with C-section birth mode

    Health-related quality of life in patients with type 1 diabetes mellitus in the different geographical regions of Brazil : data from the Brazilian Type 1 Diabetes Study Group

    Get PDF
    Background: In type 1 diabetes mellitus (T1DM) management, enhancing health-related quality of life (HRQoL) is as important as good metabolic control and prevention of secondary complications. This study aims to evaluate possible regional differences in HRQoL, demographic features and clinical characteristics of patients with T1DM in Brazil, a country of continental proportions, as well as investigate which variables could influence the HRQoL of these individuals and contribute to these regional disparities. Methods: This was a retrospective, cross-sectional, multicenter study performed by the Brazilian Type 1 Diabetes Study Group (BrazDiab1SG), by analyzing EuroQol scores from 3005 participants with T1DM, in 28 public clinics, among all geographical regions of Brazil. Data on demography, economic status, chronic complications, glycemic control and lipid profile were also collected. Results: We have found that the North-Northeast region presents a higher index in the assessment of the overall health status (EQ-VAS) compared to the Southeast (74.6 ± 30 and 70.4 ± 19, respectively; p < 0.05). In addition, North- Northeast presented a lower frequency of self-reported anxiety-depression compared to all regions of the country (North-Northeast: 1.53 ± 0.6; Southeast: 1.65 ± 0.7; South: 1.72 ± 0.7; Midwest: 1.67 ± 0.7; p < 0.05). These findings could not be entirely explained by the HbA1c levels or the other variables examined. Conclusions: Our study points to the existence of additional factors not yet evaluated that could be determinant in the HRQoL of people with T1DM and contribute to these regional disparities

    Enduring behavioral effects induced by birth by caesarean section in the mouse

    Get PDF
    Birth by Caesarean (C)-section impacts early gut microbiota colonization and is associated with an increased risk of developing immune and metabolic disorders. Moreover, alterations of the microbiome have been shown to affect neurodevelopmental trajectories. However, the long-term effects of C-section on neurobehavioral processes remain unknown. Here, we demonstrated that birth by C-section results in marked but transient changes in microbiome composition in the mouse, in particular, the abundance of Bifidobacterium spp. was depleted in early life. Mice born by C-section had enduring social, cognitive, and anxiety deficits in early life and adulthood. Interestingly, we found that these specific behavioral alterations induced by the mode of birth were also partially corrected by co-housing with vaginally born mice. Finally, we showed that supplementation from birth with a Bifidobacterium breve strain, or with a dietary prebiotic mixture that stimulates the growth of bifidobacteria, reverses selective behavioral alterations in C-section mice. Taken together, our data link the gut microbiota to behavioral alterations in C-section-born mice and suggest the possibility of developing adjunctive microbiota-targeted therapies that may help to avert long-term negative consequences on behavior associated with C-section birth mode

    Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope

    Get PDF
    We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models

    Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk

    Get PDF
    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer

    The microbiota-gut-brain axis

    Get PDF
    The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore