6 research outputs found

    Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases.

    Get PDF
    BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations

    A clinical and molecular characterisation of CRB1-associated maculopathy

    Get PDF
    To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype–phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull’s-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes—intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date

    Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation

    No full text
    Nonsense-mediated mRNA decay (NMD) is of universal biological significance1, 2, 3. It has emerged as an important global RNA, DNA and translation regulatory pathway4. By systematically sequencing 737 genes (annotated in the Vertebrate Genome Annotation database) on the human X chromosome in 250 families with X-linked mental retardation, we identified mutations in the UPF3 regulator of nonsense transcripts homolog B (yeast) (UPF3B) leading to protein truncations in three families: two with the Lujan-Fryns phenotype5, 6 and one with the FG phenotype7. We also identified a missense mutation in another family with nonsyndromic mental retardation. Three mutations lead to the introduction of a premature termination codon and subsequent NMD of mutant UPF3B mRNA. Protein blot analysis using lymphoblastoid cell lines from affected individuals showed an absence of the UPF3B protein in two families. The UPF3B protein is an important component of the NMD surveillance machinery8, 9. Our results directly implicate abnormalities of NMD in human disease and suggest at least partial redundancy of NMD pathways.Patrick S Tarpey, F Lucy Raymond, Lam S Nguyen, Jayson Rodriguez, Anna Hackett, Lucianne Vandeleur, Raffaella Smith, Cheryl Shoubridge, Sarah Edkins, Claire Stevens, Sarah O'Meara, Calli Tofts, Syd Barthorpe, Gemma Buck, Jennifer Cole, Kelly Halliday, Katy Hills, David Jones, Tatiana Mironenko, Janet Perry, Jennifer Varian, Sofie West, Sara Widaa, John Teague, Ed Dicks, Adam Butler, Andrew Menzies, David Richardson, Andrew Jenkinson, Rebecca Shepherd, Keiran Raine, Jenny Moon, Yin Luo, Josep Parnau, Shambhu S Bhat, Alison Gardner, Mark Corbett, Doug Brooks, Paul Thomas, Emma Parkinson-Lawrence, Mary E Porteous, John P Warner, Tracy Sanderson, Pauline Pearson, Richard J Simensen, Cindy Skinner, George Hoganson, Duane Superneau, Richard Wooster, Martin Bobrow, Gillian Turner, Roger E Stevenson, Charles E Schwartz, P Andrew Futreal, Anand K Srivastava, Michael R Stratton & Jozef Géc

    Recurrent Deletion of ZNF630 at Xp11.23 Is Not Associated With Mental Retardation How to Cite this Article

    No full text
    ZNF630 is a member of the primate-specific Xp11 zinc finger gene cluster that consists of six closely related genes, of which ZNF41, ZNF81, and ZNF674 have been shown to be involved in mental retardation. This suggests that mutations of ZNF630 How to Cite this Article: 638 might influence cognitive function. Here, we detected 12 ZNF630 deletions in a total of 1,562 male patients with mental retardation from Brazil, USA, Australia, and Europe. The breakpoints were analyzed in 10 families, and in all cases they were located within two segmental duplications that share more than 99% sequence identity, indicating that the deletions resulted from non-allelic homologous recombination. In 2,121 healthy male controls, 10 ZNF630 deletions were identified. In total, there was a 1.6-fold higher frequency of this deletion in males with mental retardation as compared to controls, but this increase was not statistically significant (P-value ¼ 0.174). Conversely, a 1.9-fold lower frequency of ZNF630 duplications was observed in patients, which was not significant either (P-value ¼ 0.163). These data do not show that ZNF630 deletions or duplications are associated with mental retardation.

    A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation

    No full text
    Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence

    D. Die einzelnen romanischen Sprachen und Literaturen.

    No full text
    corecore