5 research outputs found

    Assessment of water footprint for a few major crops in Banas River Basin of Rajasthan

    Get PDF
    Water security is essential for socio-economic development, ecosystem management, and environmental sustainability. An improved understanding of the relationships between water demand and supply is needed to mitigate the impacts of diminishing water resources. The present study aimed to assess the crop water footprint of sixteen major crops in the basin namely, bajra/ pearl millet (Pennisetum glaucum L.), barley (Hordeum vulgare L.), cotton (Gossypium herbaceum L.), gram/chickpea (Cicer arietinum L.), groundnut (Arachis hypogaea L.), guar/cluster beans (Cyamopsis tetragonoloba L.), jowar/ sorghum (Sorghum bicolor L.), lentil/ masoor (Lens culinaris L.), maize (Zea mays L.), mungbean (Vigna radiata L.), rapeseed & mustard (Brassica napus L.), rice/paddy (Oryza sativa L.), sesame (Sesamum indicum L.), soybean (Glycine max L.), urad/ black gram (Vigna mungo L.) and wheat (Triticum aestivum L.) was estimated during 2008-2020 in the Banas river basin of Rajasthan. The average annual water footprint of crop production varied from 11365.8-23131.5 MCM/yr (Mean 19254.5 MCM/yr) during the study period. Wheat, bajra, maize, rapeseed & mustard make up 67.4 % of the total average annual water footprint of crop production. The blue water footprint of crop production was 3942.1 MCM/yr, with wheat, rapeseed & mustard accounting for almost 87.0 % of the average annual blue water footprint. Blue, green and grey water footprints comprised 20.8, 69.7 and 9.5 % of the total WF of crop production in the basin, respectively. This assessment can play a significant role in developing better policies for properly managing water footprints for sustainable crop production in the basin

    Effect of urea supplemented and urea treated straw based diet on milk urea concentration in crossbred Karan-Fries cows

    No full text
    The study was undertaken to evaluate the effect of urea supplemented and urea treated straw based diet on milk ureaconcentration. Six multiparous crossbred Karan-Fries (Holstein Friesian ✕ Tharparkar) cows were blocked into threegroups of nearly equal body weight, DIM, milk yield and milk fat content and were randomized into a 3 ✕ 3 Latin squaredesign with 3-week period. Three experimental diets were fed to the animals. Composition of these diets were: Diet 1)green maize, wheat straw and concentrate mixture; Diet 2) green maize, wheat straw, concentrate mixture (urea supplemented)and molasses; Diet 3) green maize (4 % of total DM), 4 % urea treated wheat straw and concentrate mixture.Intake of DM and CP did not vary across the diets. Intake of digestible crude protein (DCP) was found significantlyhigher in diet 2, while ME and NEL intakes were found significantly lower in diet 3 but did not differ between diets 1and 2. Average milk and plasma urea concentrations (mg dl-1) were found 29.2 ± 2.6, 45.3 ± 0.9, 34.5 ± 2.3 and 28.9± 2.4, 36.6 ± 1.4, 33.9 ± 2.2, respectively in diet 1, diet 2 and diet 3. Urea concentrations in morning milk sampleswere found significantly lower than noon or evening samples in all the three diets. Concentrations of urea in milk andplasma were found closely correlated (r = 0.94) and the regression equation developed was, plasma urea = 8.90 (.89)+ .79 (.02) milk urea. Intake (g) of DCP than CP, per unit (MCal) of ME was found more closely associated with milk ureaconcentration. The study revealed that urea supplementation and urea treated straw based diet increased urea concentrationsignificantly in milk and plasma. Morning milk urea values that estimated at a time gap of 15 hr since last majorfeeding may be considered as the lowest level and can be used for interpretation to monitor feeding adequacy or reproductiveperformances in dairy cows

    Water footprint assessment and its importance in Indian context: a meta-review

    No full text
    With the increasing population and per capita demand for freshwater, the burden of natural resources has increased many folds. Indian agriculture is still largely dependent on conventional methods of crop production that are mainly inefficient. Water security is essential for social and economic development, having an indispensable role in enhancing health, well-being, and economic progress, particularly in a developing country like India. Water footprint (WF) is an important indicator that helps ascertain the direct and indirect use of water in any process. WF modeling in agriculture enables us to pinpoint the impacts and limitations of the current crop production system. Assessing vulnerabilities across various regions and time helps us prepare actions to improve water productivity and promote sustainable water use. There is considerable spatial variability in blue, green, and gray WF among the different states of India due to their varied climate, soil, and topographic characteristics. WF assessment is critical for developing water allocation strategies, planning water trade, making policies, and implementing remedial measures. This paper describes the significance of WF and its proper management for sustainable crop production in India. HIGHLIGHTS Water security is essential for social and economic development, especially for countries like India, supporting nearly 17.1% of the world's population.; The average annual per capita water availability has declined over the years while demand from various sectors mounted over the years.; Among the various countries of the world, India has the largest total WF at 1047 billion cubic meters per year (BCM/year), followed by China (967 BCM/year) and the USA (826 BCM/year).

    Improving Water Productivity of Wheat-Based Cropping Systems in South Asia for Sustained Productivity

    No full text
    corecore