829 research outputs found

    Causes of Adverse Pregnancy Outcomes and the Role of Maternal Periodontal Status – A Review of the Literature

    Get PDF
    Preterm (PT) and Low birth weight (LBW) are considered to be the most relevant biological determinants of newborn infants survival, both in developed and in developing countries. Numerous risk factors for PT and LBW have been defined in the literature. Infections of the genitourinary tract infections along with various biological and genetic factors are considered to be the most common etiological factors for PT/LBW deliveries. However, evidence suggests that sub-clinical infection sites that are also distant from the genitor-urinary tract may be an important cause for PT/LBW deliveries. Maternal periodontal status has also been reported by many authors as a possible risk factor for PT and LBW, though not all of the actual data support such hypothesis. The aim of this paper is to review the evidence from various published literature on the association between the maternal periodontal status and adverse pregnancy outcomes. Although this review found a consistent association between periodontitis and PT/LBW, this finding should be treated with great caution until the sources of heterogeneity can be explained

    Chromatin-associated regulation of sorbitol synthesis in flower buds of peach

    Full text link
    [EN] Key message PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Abstract Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.This work was funded by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)-FEDER (RF2013-00043-C02-02) and the Ministry of Science and Innovation of Spain (AGL2010-20595). AL was funded by a fellowship co-financed by the European Social Fund and the Instituto Valenciano de Investigaciones Agrarias (IVIA).Lloret, A.; Martinez Fuentes, A.; AgustĂ­ FonfrĂ­a, M.; Badenes, ML.; Rios, G. (2017). Chromatin-associated regulation of sorbitol synthesis in flower buds of peach. Plant Molecular Biology. 95(4-5):507-517. https://doi.org/10.1007/s11103-017-0669-6S507517954-5Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496Bai S, Saito T, Ito A et al (2016) Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia ‘Kosui’). BMC Genomics 17:230. doi: 10.1186/s12864-016-2514-8Bielenberg DG, Wang Y, Li Z et al (2008) Sequencing and annotation of the evergrowing locus in peach (Prunus persica [L.] Batsch) reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507. doi: 10.1007/s11295-007-0126-9Bieleski RL (1969) Accumulation and translocation of sorbitol in apple phloem. Aust J Biol Sci 22:611–620. doi: 10.1071/BI9690611Bieleski RL (1982) Sugar alcohols. In: Loewus F, Tanner W (eds) Encyclopedia of plant physiology, new series 13A. Springer-Verlag, Berlin, pp 158–192Bortiri E, Oh SH, Gao FY, Potter D (2002) The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). Am J Bot 89:1697–1708. doi: 10.3732/ajb.89.10.1697Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238. doi: 10.1146/annurev.pp.11.060160.001203Conde D, Le Gac AL, Perales M et al (2017) Chilling-responsive DEMETER-LIKE DNA demethylase mediates in poplar bud break. Plant Cell Environ 40:2236–2249. doi: 10.1111/pce.13019Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Amer Soc Hort Sci 110:47–50de la Fuente L, Conesa A, Lloret A, Badenes ML, RĂ­os G (2015) Genome-wide changes in histone H3 lysine 27 trimethylation associated with bud dormancy release in peach. Tree Genet Genomes 11:45. doi: 10.1007/s11295-015-0869-7Deng W, Buzas DM, Ying H et al (2013) Arabidopsis polycomb repressive complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes. BMC Genomics 14:593. doi: 10.1186/1471-2164-14-593Escobar-GutiĂ©rrez AJ, GaudillĂšre JP (1996) Distribution, metabolism and role of sorbitol in higher plants—A review. Agronomie 16:281–298. doi: 10.1051/agro:19960502Escobar-GutiĂ©rrez AJ, Zipperlin B, Carbonne F, Moing A, GaudillĂ©re JP (1998) Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Aust J Plant Physiol 25:197–205. doi: 10.1071/PP97121Eshghi S, Tafazoli E, Dokhani S, Rahemi M, Emam Y (2007) Changes in carbohydrate contents in shoot tips, leaves and roots of strawberry (Fragaria x ananassa Duch) during flower-bud differentiation. Sci Hortic 113:255–260. doi: 10.1016/j.scienta.2007.03.014Everard JD, Cantini C, Grumet R, Plummer J, Loescher WH (1997) Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery. Plant Physiol 113:1427–1435. doi: 10.1104/pp.113.4.1427Fennell A (2014) Genomics and functional genomics of winter low temperature tolerance in temperate fruit crops. Crit Rev Plant Sci 33:125–140. doi: 10.1080/07352689.2014.870410Figueroa CM, Iglesias AA (2010) Aldose-6-phosphate reductase from apple leaves: importance of the quaternary structure for enzyme activity. Biochimie 92:81–88. doi: 10.1016/j.biochi.2009.09.013Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845. doi: 10.1016/S0168-9452(00)00458-1Grant CR, ap Rees T (1981) Sorbitol metabolism by apple seedlings. Phytochemistry 20:1505–1511. doi: 10.1016/S0031-9422(00)98521-2Hartman MD, Figueroa CM, Arias DG, Iglesias AA (2017) Inhibition of recombinant aldose-6-phosphate reductase from peach leaves by hexose-phosphates, inorganic phosphate and oxidants. Plant Cell Physiol 58:145–155. doi: 10.1093/pcp/pcw180Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540. doi: 10.1016/j.tplants.2003.09.013Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179. doi: 10.1007/s11103-009-9596-5Hussain S, Niu Q, Yang F, Hussain N, Teng Y (2015) The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol Plant 59:726–734. doi: 10.1007/s10535-015-0547-5Hyndman D, Baumanb DR, Herediac VV, Penning TM (2003) The aldo-keto reductase superfamily homepage. Chem Biol Interact 143–144:621–631. doi: 10.1016/S0009-2797(02)00193-XIto A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194. doi: 10.1016/j.scienta.2012.07.009Ito A, Sugiura T, Sakamoto D, Moriguchi T (2013) Effects of dormancy progression and low-temperature response on changes in the sorbitol concentration in xylem sap of Japanese pear during winter season. Tree Physiol 33:398–408. doi: 10.1093/treephys/tpt021Jung S, Bassett C, Bielenberg DG et al (2015) A standard nomenclature for gene designation in the Rosaceae. Tree Genet Genomes 11:108. doi: 10.1007/s11295-015-0931-5Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608Kanayama Y, Watanabe M, Moriguchi R, Deguchi M, Kanahama K, Yamaki S (2006) Effects of low temperature and abscisic acid on the expression of the sorbitol-6-phosphate dehydrogenase gene in apple leaves. J Japan Soc Hort Sci 75:20–25. doi: 10.2503/jjshs.75.20Kumar G, Rattan UK, Singh AK (2016a) Chilling-mediated DNA methylation changes during dormancy and its release reveal the importance of epigenetic regulation during winter dormancy in apple (Malus x domestica Borkh). PLoS ONE 11:e0149934. doi: 10.1371/journal.pone.0149934Kumar S, Stecher G, Tamura K (2016b) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874. doi: 10.1093/molbev/msw054Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi: 10.1038/227680a0Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404Leida C, Terol J, MartĂ­ G et al (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666. doi: 10.1093/treephys/tpq008Leida C, Conesa A, LlĂĄcer G, Badenes ML, RĂ­os G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80. doi: 10.1111/j.1469-8137.2011.03863.xLiang D, Cui M, Wu S, Ma F-W (2012) Genomic structure, sub-cellular localization, and promoter analysis of the gene encoding sorbitol-6-phosphate dehydrogenase from apple. Plant Mol Biol Rep 30:904–914. doi: 10.1007/s11105-011-0409-zLiu D, Ni J, Wu R, Teng Y (2013) High temperature alters sorbitol metabolism in Pyrus pyrifolia leaves and fruit flesh during late stages of fruit enlargement. J Am Soc Hortic Sci 138:443–451Lloret A, Conejero A, Leida C et al (2017) Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 7:332. doi: 10.1038/s41598-017-00471-7Lo Bianco R, Rieger M, Sung S-JS (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiol Plant 108:71–78. doi: 10.1034/j.1399-3054.2000.108001071.xLoescher WH (1987) Physiology and metabolism of sugar alcohols in higher-plants. Physiol Plant 70:553–557. doi: 10.1111/j.1399-3054.1987.tb02857.xLoescher WH, Marlow GC, Kennedy RA (1982) Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiol 70:335–339. doi: 10.1104/pp.70.2.335Marquat C, Vandamme M, Gendraud M, PĂ©tel G (1999) Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Sci Hortic 79:151–162. doi: 10.1016/S0304-4238(98)00203-9Niu Q, Li J, Cai D et al (2016) Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J Exp Bot 67:239–257. doi: 10.1093/jxb/erv454Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47RĂ­os G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247. doi: 10.3389/fpls.2014.00247Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T (2015) Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant Cell Environ 38:1157–1166. doi: 10.1111/pce.12469SantamarĂ­a ME, HasbĂșn R, Valera MJ et al (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369. doi: 10.1016/j.jplph.2009.02.014Shen B, Hohmann S, Jensen RG, Bohnert HJ (1999) Roles of sugar alcohols in osmotic stress adaptation replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52. doi: 10.1104/pp.121.1.45Sheveleva EV, Marquez S, Chmara W, Zegeer A, Jensen RG, Bohnert HJ (1998) Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco high amounts of sorbitol lead to necrotic lesions. Plant Physiol 117:831–839. doi: 10.1104/pp.117.3.831Silver N, Best S, Jian J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. doi: 10.1186/1471-2199-7-33Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. doi: 10.1080/10635150701472164Tao R, Uratsu SL, Dandekar AM (1995) Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Cell Physiol 36:525–532. doi: 10.1093/oxfordjournals.pcp.a078789Teo G, Suzuki Y, Uratsu SL et al (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. Proc Natl Acad Sci USA 103:18842–18847. doi: 10.1073/pnas.0605873103Trotel P, Bouchereau A, Niogret MF, Larher F (1996) The fate of osmo-accumulated proline in leaf discs of Rape (Brassica napus L) incubated in a medium of low osmolarity. Plant Sci 118:31–45. doi: 10.1016/0168-9452(96)04422-6Verde I, Abbott AG, Scalabrin S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494. doi: 10.1038/ng.2586Webb KL, Burley JWA (1962) Sorbitol translocation in apple. Science 137:766. doi: 10.1126/science.137.3532.766Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6:85. doi: 10.3389/fpls.2015.00085Yadav R, Prasad R (2014) Identification and functional characterization of sorbitol-6-phosphate dehydrogenase protein from rice and structural elucidation by in silico approach. Planta 240:223–238. doi: 10.1007/s00425-014-2076-

    Importance of TLR2 on Hepatic Immune and Non-Immune Cells to Attenuate the Strong Inflammatory Liver Response During Trypanosoma cruzi Acute Infection

    Get PDF
    Trypanosoma cruzi, an obligate intracellular protozoan, is the etiological agent of Chagas Disease that represents an important public health burden in Latin America. The infection with this parasite can lead to severe complications in cardiac, liver and gastrointestinal tissue depending on the strain of parasite and host genetics. Recently, we reported a fatal liver injury in T. cruzi infected B6 mice. However, the local immune response against this parasite is poorly understood. This work highlights some of the molecular and cellular mechanisms involved in liver pathology during the acute phase of infection. Using two mouse strains with different genetic backgrounds and responses to infection, B6 and BALB/c, we found that infected B6 mice develop a strong pro-inflammatory environment associated with high TLR9 expression. Conversely, infected BALB/c mice showed a more balanced inflammatory response in liver. Moreover, higher TLR2 and TLR4 expression were found only in hepatocytes from BALB/c. These data emphasize the importance of an adequate integration of signalling between immune and non-immune cells to define the outcome of infection. In addition, the pre-treatment with TLR2-agonist reverts the strong pro-inflammatory environment in T. cruzi infected B6 mice. These results could be useful in the understanding and design of novel immune strategies in controlling liver pathologies

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan ÎČ in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zâ€Č gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the ÎŒ + ÎŒ −channel. A Z â€Č boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zâ€Č Models

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore