678 research outputs found
Robust Entanglement in Atomic Systems via Lambda-Type Processes
It is shown that the system of two three-level atoms in
configuration in a cavity can evolve to a long-lived maximum entangled state if
the Stokes photons vanish from the cavity by means of either leakage or
damping. The difference in evolution picture corresponding to the general model
and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure
Two-loop HTL Thermodynamics with Quarks
We calculate the quark contribution to the free energy of a hot quark-gluon
plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All
ultraviolet divergences can be absorbed into renormalizations of the vacuum
energy and the HTL quark and gluon mass parameters. The quark and gluon HTL
mass parameters are determined self-consistently by a variational prescription.
Combining the quark contribution with the two-loop HTL perturbation theory free
energy for pure-glue we obtain the total two-loop QCD free energy. Comparisons
are made with lattice estimates of the free energy for N_f=2 and with exact
numerical results obtained in the large-N_f limit.Comment: 33 pages, 6 figure
Bianchi Type I Cosmology in Generalized Saez-Ballester Theory via Noether Gauge Symmetry
In this paper, we investigate the generalized Saez-Ballester scalar-tensor
theory of gravity via Noether gauge symmetry (NGS) in the background of Bianchi
type I cosmological spacetime. We start with the Lagrangian of our model and
calculate its gauge symmetries and corresponding invariant quantities. We
obtain the potential function for the scalar field in the exponential form. For
all the symmetries obtained, we determine the gauge functions corresponding to
each gauge symmmetry which include constant and dynamic gauge. We discuss
cosmological implications of our model and show that it is compatible with the
observational data.Comment: 13 pages, 2 figures, accepted for publication in 'European Physical
Journal C
Persistent Spin Currents in Helimagnets
We demonstrate that weak external magnetic fields generate dissipationless
spin currents in the ground state of systems with spiral magnetic order. Our
conclusions are based on phenomenological considerations and on microscopic
mean-field theory calculations for an illustrative toy model. We speculate on
possible applications of this effect in spintronic devices.Comment: 9 pages, 6 figures, updated version as published, Journal referenc
Partially Annealed Disorder and Collapse of Like-Charged Macroions
Charged systems with partially annealed charge disorder are investigated
using field-theoretic and replica methods. Charge disorder is assumed to be
confined to macroion surfaces surrounded by a cloud of mobile neutralizing
counterions in an aqueous solvent. A general formalism is developed by assuming
that the disorder is partially annealed (with purely annealed and purely
quenched disorder included as special cases), i.e., we assume in general that
the disorder undergoes a slow dynamics relative to fast-relaxing counterions
making it possible thus to study the stationary-state properties of the system
using methods similar to those available in equilibrium statistical mechanics.
By focusing on the specific case of two planar surfaces of equal mean surface
charge and disorder variance, it is shown that partial annealing of the
quenched disorder leads to renormalization of the mean surface charge density
and thus a reduction of the inter-plate repulsion on the mean-field or
weak-coupling level. In the strong-coupling limit, charge disorder induces a
long-range attraction resulting in a continuous disorder-driven collapse
transition for the two surfaces as the disorder variance exceeds a threshold
value. Disorder annealing further enhances the attraction and, in the limit of
low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure
Theoretical and technological building blocks for an innovation accelerator
The scientific system that we use today was devised centuries ago and is
inadequate for our current ICT-based society: the peer review system encourages
conservatism, journal publications are monolithic and slow, data is often not
available to other scientists, and the independent validation of results is
limited. Building on the Innovation Accelerator paper by Helbing and Balietti
(2011) this paper takes the initial global vision and reviews the theoretical
and technological building blocks that can be used for implementing an
innovation (in first place: science) accelerator platform driven by
re-imagining the science system. The envisioned platform would rest on four
pillars: (i) Redesign the incentive scheme to reduce behavior such as
conservatism, herding and hyping; (ii) Advance scientific publications by
breaking up the monolithic paper unit and introducing other building blocks
such as data, tools, experiment workflows, resources; (iii) Use machine
readable semantics for publications, debate structures, provenance etc. in
order to include the computer as a partner in the scientific process, and (iv)
Build an online platform for collaboration, including a network of trust and
reputation among the different types of stakeholders in the scientific system:
scientists, educators, funding agencies, policy makers, students and industrial
innovators among others. Any such improvements to the scientific system must
support the entire scientific process (unlike current tools that chop up the
scientific process into disconnected pieces), must facilitate and encourage
collaboration and interdisciplinarity (again unlike current tools), must
facilitate the inclusion of intelligent computing in the scientific process,
must facilitate not only the core scientific process, but also accommodate
other stakeholders such science policy makers, industrial innovators, and the
general public
Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV
Peer reviewe
Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks
Peer reviewe
Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search
Peer reviewe
Radiative Decay in the Light Cone QCD Approach
We calculate to the leading twist 2 accuracy the rate for the decay using the light cone QCD sume rules. We find . The results are used
to test the applicability of the constituent quark model approximation to the
same process.The latter estimate is proportional to , where is the "constituent quark mass", indicating
that the process is of long distance type. We find that the two approaches
yield similar results for the rate with the choice . This indicates that the constituent quark model may be used for estimates of
the radiative "annihilation" contribution to this and other radiative decays.
We point out that this decay may be useful for the measurement of .Comment: latex, 14 pages, one figure is available upon reques
- …
