363 research outputs found

    Ag on Ge(111): 2D X-ray structure analysis of the (Wurzel)3 x (Wurzel)3 superstructure

    Get PDF
    We have studied the Ag/Ge(111)(Wurzel)3 x (Wurzel)3 superstructure by grazing-incidence X-ray diffraction. In our structural analysis we find striking similarities to the geometry of Au on Si(111). The Ag atoms form trimer clusters with an Ag-Ag distance of 2.94+-0.04°A with the centers of the trimers being located at the origins of the (Wurzel)3 x (Wurzel)3 lattice. The Ag layer is incomplete and at least one substrate layer is distorted

    A new type of reconstruction on the InSb() surface determined by grazing incidence X-ray diffraction

    Get PDF
    The (3×3) reconstruction of the InSb( ) surface has been investigated by grazing incidence X-ray diffraction and scanning tunneling microscopy. The structure is characterized by 6-atom rings on top of a slightly buckled InSb top double layer. Two types of rings have been found, an elliptic ring consisting of 4 In and 2 Sb atoms and a trigonal ring with 3 In and 3 Sb atoms. The bond angles and lengths are consistent with the concept of rehybridization and depolarization which explains the reconstructions of the (111) and (110) surfaces

    Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach

    Full text link
    Using recently developed quantum SU(2)xU(1) rotor approach, that provides a self-consistent treatment of the antiferromagnetic state we have performed electronic spectral function calculations for the Hubbard model on the square lattice. The collective variables for charge and spin are isolated in the form of the space-time fluctuating U(1) phase field and rotating spin quantization axis governed by the SU(2) symmetry, respectively. As a result interacting electrons appear as composite objects consisting of bare fermions with attached U(1) and SU(2) gauge fields. This allows us to write the fermion Green's function in the space-time domain as the product CP^1 propagator resulting from the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion correlation function. As a result the problem of calculating the spectral line shapes now becomes one of performing the convolution of spin, charge and pseudo-fermion Green's functions. The collective spin and charge fluctuations are governed by the effective actions that are derived from the Hubbard model for any value of the Coulomb interaction. The emergence of a sharp peak in the electron spectral function in the antiferromagnetic state indicates the decay of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.

    Secure Mobile Support of Independent Sales Agencies

    Get PDF
    Sales agents depend on mobile support systems for their daily work. Independent sales agencies, however, are not able to facilitate this kind of mobile support on their own due to their small size and lack of the necessary funds. Since their processes correlate with confidential information and include the initiation and alteration of legally binding transactions they have a high need for security. In this contribution we first propose an IT-artifact consisting of a service platform that supports multi-vendor sales processes based on previous work. We then analyze use cases of sales representatives of independent sales agencies using this system and derive their security requirements. We then propose a security extension to the IT-artifact and evaluate this extension by comparing it to existing solutions. Our results show that the proposed artifact extension provides a more convenient and secure solution than already existing approaches

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ϵ(q)\epsilon(\vec{q}) has a current-induced contribution proportional to qJ\vec{q}\cdot \vec{\cal J}, where J\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j109Acm2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore