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We discuss the influence of a uniform currentjW on the magnetization dynamics of a ferromagnetic metal. We

find that the magnon energye(qW ) has a current-induced contribution proportional toqW •JW , whereJW is the spin

current, and predict that collective dynamics will be more strongly damped at finitejW. We obtain similar results
for models with and without local moment participation in the magnetic order. For transition metal ferromag-
nets, we estimate that the uniform magnetic state will be destabilized forj *109 A cm22. We discuss the
relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous
magnetic systems.
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I. INTRODUCTION

The strong and robust magnetotransport effects that o
in metallic ferromagnets~anisotropic, tunnel, and giant mag
netoresistance, for example1! result from the sensitivity of
magnetization orientation to external fields, combined w
the strong magnetization-orientation-dependent poten
felt by the current-carrying quasiparticles. This fundame
tally interesting class of effects has been exploited in inf
mation storage technology for some time, and new variati
continue to be discovered and explored. Attention has tur
more recently to a distinct class of phenomena in which
relationship between quasiparticle and collective proper
is inverted, effects in which control of the quasiparticle st
is used to manipulate collective properties rather than v
versa. Of particular importance is the theoretical predictio2,3

of current-induced magnetization switching and relatedspin
transfereffects in ferromagnetic multilayers. The conditio
necessary to achieve observable effects have been ex
mentally realized and the predictions of theory largely co
firmed by a number of groups4–9 over the past several year

Current-induced switching is expected2,3,10 to occur in
magnetically inhomogeneous systems containing two
more weakly coupled magnetic layers. The work presen
in the present paper was motivated by a related theore
prediction of Bazaily, Jones, and Zhang~hereafter BJZ!, who
argued that the energy functional of a uniform bulk ha
metallic ferromagnet contains a term linear in the curren
the quasiparticles,11 i.e., collective magnetic properties ca
be influenced by currents even in a homogeneous bulk
romagnetic metal. The current-induced term in the ene
functional identified by BJZ implies an additional contrib
tion to the Landau-Lifshitz equations of motion and, in
quantum theory, to a change proportional toqW • jW in the mag-
non energye(qW ). ~HereqW is the magnon or spin-wave wav
vector andjW is the current density in the ferromagnet.! The
BJZ theory predicts that a sufficiently large current dens
will appreciably soften spin waves at finite wave vectors a
eventually lead to an instability of a uniform ferromagn
The current densities necessary to produce an instab
0163-1829/2004/69~17!/174412~12!/$22.50 69 1744
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were estimated by BJZ to be of order 108 A cm22, roughly
the same scale as the current densities at which spin-tran
phenomena are realized,4,5,7–9apparently suggesting to som
that these two phenomena are deeply related.

In this paper we establish that modification of spin-wa
dynamics by current is a generic feature of all uniform bu
metallic ferromagnets, not restricted to the half-metallic ca
considered by BJZ. We find that, in the general case,
extra term in the spin-wave spectrum,

de~qW !}qW •JW , ~1!

whereJW is the spin current, i.e., the current carried by th
majority carriers minus the current carried by the minor
carriers.12 In the half-metallic caseJW 5 jW, recovering the re-
sult of Ref. 11. Following Ref. 13, we refer to the extra ter
in the spin-wave dispersion as thespin-wave Doppler shift,
although this terminology ignores the role of underlying la
tice as we shall explain. We also study the effect of a unifo
current on spin-wave damping. The usual Gilbert damp
law g}e(qW 50), has an additional contribution proportion
to the spin-current density. In our picture, a uniform curre
modifies collective magnetization dynamics because it al
the distribution of quasiparticles in momentum space.

Our paper is organized as follows. In Sec. II we pres
two general qualitative arguments which partially justify E
~1!, independent of any detailed microscopic model. In S
III we substantiate the arguments with a microscopic cal
lation of the spin-wave spectrum for a ferromagnetic~but not
necessarily half-metallic! phase of a Hubbard model, includ
ing the effect of the current. We derive Eq.~ 1!, and demon-
strate explicitly that when generalized from the half-meta
case to the general case, the spin-wave Doppler shift is
portional to the spin current,not the total current. The mi-
croscopic calculation of Sec. III uses an effective action
proach, which separates collective and quasipart
coordinates in a natural way and is well suited to study th
interplay. In Sec. IV we specialize to the half-metallic ca
and rederive the results of Ref. 11 for the case of ans-d
model ferromagnet. This serves the purpose of establishi
©2004 The American Physical Society12-1
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clear formal connection between the derivations presente
Secs. II and III and the derivation presented by BJZ, wh
appear superficially to be quite distinct. In Sec. V we disc
the effect of a current on spin-wave damping. We consi
both damping due to the coupling of spin waves with t
quasiparticles and two magnon damping, which we argu
enhanced by the spin-wave Doppler shift of Eq.~1!. In Sec.
VI we discuss the relationship between the spin-wave D
pler shift and spin-transfer in inhomogeneous ferromagn
Finally, in Sec. VII we summarize our main results a
present our conclusions.

II. QUALITATIVE EXPLANATION
OF THE CURRENT-INDUCED MAGNON

ENERGY SHIFT

The low-energy collective dynamics of the magnetizat
orientation in a ferromagnet is described by the Land
Lifshitz equation:

\]VW ~rW,t !

]t
5VW 3FdE~VW ,] iV j !

dVW
1a\

]VW ~rW,t !

]t G , ~2!

whereVW (rW,t) is an unimodular vector field which describe
the orientation of the collective magnetization a
E(VW ,] iV j ) is an energy functional ofVW (rW,t) and its deriva-
tives. The generic applicability of this equation follows fro
the collective nature of spin dynamics in ferromagnets. It c
be derived from a number of different microscopic models
a number of different ways. In particular, this equation d
scribes the low-energy long-wavelength dynamics of the
models of metallic ferromagnetism that we consider in la
sections. Normally,E is minimized by a collinear configura
tionsVW (rW,t)5VW 0 along some privilegedeasydirection. The
Landau-Lifshitz equations linearized aroundVW 0 have solu-
tions which describe distortions of the magnetization ori
tation that propagate like waves with waveqW and frequency
v(qW ).14 In a quantum treatment, magnetization-orientat
fluctuations are quantized in units ofe(qW )5\v(qW ).

In a metallic ferromagnet, the quasiparticles occu
bands15 that are energetically split by an effective Zeema
coupling magnetic field oriented along the directionVW . Non-
collinear configurations are penalized because band-elec
kinetic energies are raised by an inhomogeneous effec
field VW (rW,t). The easy axis is determined by spin-orbit inte
actions of the band electrons and by the magnetostatic
ergy, which because of its long range depends on the ov
shape of the sample.

The dynamics generated by the first term in square bra
ets in Eq.~2! is energy conserving, whereas the second te
proportional to the dimensionless coefficienta, transfers en-
ergy from the collective coordinate to other degrees of fr
dom. In a metallic ferromagnet, the damping is partly due
the excitation of electron-hole pairs in response to the te
poral evolution ofVW . It is clear, therefore, that there is a
intimate relation between the dynamics of the collective
ordinate and the state of the quasiparticles. Moreover, w
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current flows inside a ferromagnet, the momentum-space
tribution functions that describe quasiparticle state occu
tion probabilities are altered. It is natural, therefore, to exp
that the dissipative dynamics of the collective magnetizat
will be affected by current flow. In Ref. 11 it was shown tha
in a half-metallic ferromagnet modeled by a sd model~a
model with a single band coupled by exchange interacti
to local moments!, the energy functionalE has a term lin-
early proportional to the quasiparticle currentjW. In the fol-
lowing paragraphs we present three arguments to suppor
idea that the spin-wave spectrum of any metallic ferromag
is modified by a uniform current in a manner similar to th
suggested by Eq.~1!.

We start with the simplest case, a half-metallic ferroma
netic electron gas, in which the current effect can be und
stood simply in terms of Galilean invariance. The curre
carrying state of this system is simply one in which the en
electronic system moves along with a drift velocityvW D . A
spin-wave excitation is the one in which the magnetizat
orientation precesses around the easy axis with freque
v(qW ):

V̂5$e sin@qW •rW2v0~qW !t#,e cos@qW •rW2v0~qW !t#,12e/2%.
~3!

In the lab frame, the system is seen as moving with veloc

vW D , and carrying currentjW52nevW D . The fixed positionrWL

in the lab frame has positionrWL2vW Dt in the moving frame.
The precession frequency seen at a fixed lab frame pos
is therefore Doppler shifted tov0(qW )1qW •vW D .

This simple effect is the essence of the spin-wave Dopp
shift. In terms of the current density the spin-wave Dopp
shift in the magnon energy is\qW • jW/en. Systems of practica
interest are neither Galilean invariant nor, with a few po
sible exceptions, half metallic; however, so a more deta
analysis is required to determine how the spin-wave Dopp
shift is manifested in real systems.

A second useful point of view follows from considering
single-mode approximation for the quantum spin-wave
ergye(qW )5\v(qW ). Elementary magnon excitations of a fe
romagnet reduce the total spin projection along the easy
by one unit and add crystal momentum\qW . A state with the
correct quantum numbers can be generated starting from
ferromagnetic ground state~or from a state that carries
uniform current! uC0& by acting on it with the ‘‘magnon
creation operator’’

s2~2qW !5 (
i 51,N

s2 i exp~ iqW •rW !, ~4!

wheres2 i is the spin-lowering operator for thei th particle.
Two-particle Green’s functions constructed from this ope
tor have poles with large residues at magnon excitation
ergies. The single-mode approximation consists of us
uC(qW )&[s2(2qW )uC0& as a variational wave function for th
magnon state at wave vectorqW . Given this approximation for
the magnon state, its excitation energy
2-2
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e~qW ![
^C~qW !uHuC~qW !&

^C~qW !uC~qW !&
2E0 ~5!

can be expressed in terms of the expectation value of a c
mutator between the general many-particle HamiltonianH
and either magnon creation or annihilation operators
simplified to the following form:

e~qW !5
\2q2

2m

1
\qW

m
•

(
i j

^C0us1 is2 j exp@ iqW •~rW j2rW i !#pW j uC0&

^C0us1~qW !s2~2qW !uC0&
.

~6!

The second term on the right-hand side of Eq.~6! is the
magnon Doppler shift term. In this terms6 i and pW i are the
spin raising and lowering momentum operators for particli.
The numerator and denominator of this term are, in gene
complex two-particle correlation functions. The correlati
functions are simplified when the ferromagnetic state is
proximated by a Slater determinant with definite occupat
numbers for both majority (↑) and minority (↓) spin mo-
mentum states, i.e., by the electron gas Stoner model fe
magnetic ground state. Then to leading order inqW we find
that the magnon Doppler shift has the value

de~qW !5
\qW

m
•

JW
n↑2n↓

. ~7!

Equation~7! is most easily obtained by writing the operato
whose expectation values need to be evaluated as a su
one-body and two-body terms and then using standard
ond quantization identities. The most important conclus
suggested by this equation is that, at least for parab
bands, in generalizing the magnon Doppler effect from h
metallic ferromagnets to ferromagnets with states of b
spins occupied, the current is replaced by the spin currenJW ,
and the density by the spin density.

Finally, the same result can be derived by considerin
variational wave function for the spin-wave state of a fer
magnetic metal in which all quasiparticle states that are
gly occupied share a common spinor that describes lo
wavelength spatial precession around the easy direction.
example if thex̂ direction is the easy direction the spinor th
describes small amplitude precession is (u,v)5@1
2h2/2,h exp(iqW•rW)#. TheqW •JW correction then follows by ob-
serving that the magnon energy equals the energy cha
divided by the change in thex̂ direction magnetization com
ponent, with both quantities being proportional toh2 at small
h. These findings suggest that the explicit approximate
pression for the magnon Doppler shift, derived from t
SMA for parabolic bands, is likely to qualitatively corre
even for realistic ferromagnets with more complicated ba
17441
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structures. Indeed, that is the conclusion that follows fr
the more microscopic derivations in the following two se
tions.

III. CURRENT-DRIVEN SPIN WAVES IN A HUBBARD
MODEL FERROMAGNET

In order to explain our theory of the influence of unifor
currents on the spin wave spectrum, we first recall how sp
waves and quasiparticle states are related in equilibri
This development will also establish the notation we use
the nonequilibrium case. The description we use is one
which a collective fluctuation field interacts with fermion
quasiparticle fields. It allows us to borrow from standa
theories of quantum harmonic oscillators weakly coupled
a bath, in order to generalize the theory of collective dyna
ics from equilibrium to nonequilibrium cases.

A. Hamiltonian and effective action

In the preceding section we discussed three general a
ments in support of the existence of a spin-wave Dopp
shift in a metallic ferromagnet that is proportional to the sp
current as in Eq.~1!. We now look more closely at the un
derlying physics by carrying out an explicit microscopic ca
culation of the spin waves for a Hubbard model in the pr
ence of a current. Unlike the sd model considered in Ref.
the Hubbard model allows for ferromagnetism in a syst
with only itinerant electrons. The Hubbard model Ham
tonian is16

H5(
i , j

t i j ci ,s
† cj ,s1U(

j
nj ,↑nj ,↓ . ~8!

The elementary excitations of a metallic ferromagnet
quasiparticles and spin waves. We want to derive the pro
gator for the spin waves of the ferromagnetic phase of
model and to see how it is affected by a quasiparticle curr
To do so, it is convenient to use the functional integrati
approach,16–19 in which the quasiparticles are integrated o
and an effective action for the spin-waves is obtained. T
procedure is sketched below, the details can be found
Refs. 16–20. The final result for the spin-wave spectrum
equivalent to that obtained by doing a random-phase
proximation Ref. 21, calculation. However, the effective a
tion approach provides a convenient conceptual framew
to understand the connection between spin waves and
equilibrium quasiparticle states, the central focus of this
per.

The interaction term in the Hubbard model can be writt
as16

U(
j

nj ,↑nj ,↓52
2

3
U(

i
SW i

21
U

2 (
s,i

ns,i .

We represent the partition function of this model as a p
integral over fermion coherent states,22 labeled by
$C̄a ,Ca%, wherea[ i ,s. The key idea which allows qua
siparticle and collective degrees of freedom to be separa
while still treating the magnetization as a quantum field,
2-3
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the introduction of a Hubbard-Stratonovich transformatio23

to represent the interaction term. By making this transform
tion, we trade a problem of interacting fermions for a pro
lem of independent fermions whose spin is coupled to
bosonic spin-splitting effective magnetic fieldDW i(t), which
acts as the collective magnetic coordinate. The partit
function reads

Z5E DC̄a~t!DCa~t!DDW i~t!exp@2S~C̄a ,Ca ,DW i !#,

where the action is

S5E
0

b

dt(
i

3DW i~t!2

8U
1 (

i ,i 8,s

C̄ i ,s~t!G i j ,s,s8
21 C j ,s~t!,

~9!

and

G i j ,s,s8
21

5S ]t2m1
U

2 D d i , j1t i , j2DW i•
tWs,s8

2
d i , j ~10!

is the inverse of the Green’s function operator.
The action~9! is the sum of three terms:~i! noninteracting

tight-binding fermions~with a Hartree shift!, ~ii ! a term qua-
dratic in the bosonic field, and~iii ! their couplingDW i•SW i ,

where SW i(t)[(s,s8
1
2 C̄ i ,stWs,s8C i 8,s8 . Since the action is

quadratic in the fermion variables, the fermion function
integral can be formally evaluated. This allows to write t
partition function as a path integral over the auxiliary fieldDW
only,

Z5E DDW i~t!e2Seff(D
W ), ~11!

where the effective action reads

Seff~DW !5E
0

b

dt(
i

3DW i~t!2

8U
2Tr ln@G 21~DW !# ~12!

Equations~11! and ~12! are one of the many possible repr
sentations of theexact partition function for the Hubbard
Model. The effective action~12! describes a complicate
quantum field theory forDW i(t).

B. Mean-field theory: Spin-split bands

The first step in a field theory of ferromagnetism is us
ally to look for classical solutions, i.e., for field configuratio
DW i

cl(t) for which the effective action is stationary. The sadd

point equation readsDW i
cl5(4U/3)^SW i&, where the average i

computed with a Green’s functionG(DW cl) obtained by replac-
ing, in Eq. ~10!, the fluctuating fieldDW i(t) by the saddle
point solution.

Assuming the existence of a ferromagnetic mean-fi
state, the classical solution for a perfect crystal is static~in-
dependent oft) and homogeneous~independent ofi ). It is
therefore characterized by a directionn and a lengthuDW clu
[D. Because of the spin rotational invariance of the Hu
17441
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bard Hamiltonian,n is arbitrary. In real systemsn is deter-
mined by spin-orbit interactions and magnetostatic effe
The mean-field Green’s functionG(DW cl) describes fermions
which occupy bands that are spin split by an effective m
netic field alongn ~see Fig. 1!. The magnitude of the spin
splitting, D, is obtained from the saddle point equation
which, for this simple model, reduce to the following form

D5
4U

3

1

2N (
kW

†nF@ekW
↑
#2nF@ekW

↓
#‡, ~13!

where ekW
s
5e(kW )2s(D/2) are the quasiparticle energies

the spin-split bands andN is the number of lattice sites. Not
that the majority band has spins parallel ton, denoted by↑.
The saddle point equations show explicitly that the auxilia
field DW cl is proportional to the average fermion magnetiz
tion, which usually appears as the fundamental field in cl
sical micromagnetic theories for realistic magnetic materia
Hereafter we refer toDW (t) as the collective coordinate.

C. Spin waves without current

We are interested in thedynamicsof the collective coor-
dinate, so that the static solution obtained by solving
mean-field approximation is insufficient. To describe the
ementary collective excitations we need to study small a
plitude dynamic fluctuations of the collective coordina
around the static solution:

DW i~t!.DW cl1dDW i~t!. ~14!

We introduce Eq.~14! into the effective action@Eq. ~12!# and
neglect terms of order@dDW i(t)#3 and higher. The resulting
action Scl(DW

cl)1SSW, where the first term is the classica
approximation to the effective action, and the fluctuation c
rection is

SSW5
1

2bN (Q,a,b
dDa~Q!Kab~Q!dDb~2Q!, ~15!

whereQ is shorthand forqW ,inn , anda,b stand for Cartesian
coordinates. Note that the bosonic fieldsdDW (Q) are dimen-
sionless and the KernelK has dimensions of inverse energ

FIG. 1. Mean-field quasiparticle bands. Dashed line shows
fermi energy.D is the spin splitting energy.
2-4
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This action defines a field theory for the spin fluctuatio
The equilibrium Matsubara Green’s function,Dab(qW ,inn) is
given22,24 by the inverse of spin fluctuation KernelKab(Q).
Analytical expressions forKab(Q) are readily evaluated fo
the case of parabolic bands and are presented below.
obtain the retarded spin fluctuation propagator by analyt
continuation of the Matsubara propagator:Dab

ret(qW ,v)

5Dab(qW ,inn→v1 i01). The imaginary part of the retarde
propagator summarizes the spectrum and the damping o
spin fluctuations most directly.

The theory defined by Eq.~15! includes two types of spin
fluctuations which are very different:~i! longitudinal fluctua-
tions ~parallel ton), or amplitude modes and~ii ! transverse
fluctuations~perpendicular ton), or spin waves. The ampli
tude modes involve a change in the magnitude of the lo
spin splitting, D, and are either overdamped or appear
energies above the continuum of spin-diagonal particle-h
excitations. In contrast, the spin-waves are gapless in
limit qW 50, in agreement with the Goldstone theorem, a
are often weakly damped even in realistic situations. N
that the amplitude modes decouple from the spin w
modes for small amplitude fluctuations. Forx̂5n, we can
write

Kab~Q!5FK uu 0 0

0 Kyy Kyz

0 Kzy Kzz

G . ~16!

Since the low-energy dynamics of a metallic ferromagne
governed by transverse spin fluctuations, we do not disc
longitudinal fluctuations further. After analytic continuatio
we obtain the following result for the inverse of the retard
transverse spin fluctuation Green’s function (D ret)21, which
is diagonal when we rotate fromŷ,ẑ to 1 ẑ6 i ŷ chiral rep-
resentations. The diagonal elements are then

D6
ret~qW ,v!5

4U

3

1

11 2
3 UG~6qW ,6v!

, ~17!

whereG(qW ,v) is the Lindhard function evaluated with th
spin-split mean-field bands:

G~qW ,v!5
1

N (
kW

nkW
↑
2nkW1qW

↓

ekW
↑
2ekW1qW

↓
1v1 i01

, ~18!

wherenkW
s is shorthand for the Fermi-Dirac occupation fun

tion nF@ekW
s
# for the quasiparticle occupation numbers. Equ

tions ~17! and~18! make it clear that the spin-wave spectru
is a functional of the occupation functionnF for the quasi-
particles in the spin-split bands. The influence of a curren
the spin-wave spectrum will enter our theory through no
equilibrium values of these occupation numbers.

In the case of parabolic bands~still without current!, the
Taylor expansion of the Lindhardt function in the low-ener
low-frequency limit gives the following result for the spin
wave propagator:
17441
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D6
ret~qW ,v!5

4UD

3

1

v6rq2
, ~19!

wherer is the spin stiffness which is easily computed an
lytically for the case of parabolic bands. The poles of E
~19! give the well-known result for the spin-wave dispersio
v56rq2. Several remarks are in order.

~i! In real systems, spin-orbit interactions lift spin rot
tional invariance, resulting in a gap for theq50 spin waves.
The size of the gap is typically of order of 1meV.25

~ii ! The interplay between disorder and spin-orbit intera
tions, absent in the above model, and gives rise to a bro
ening of the spin-wave spectrum, even at small freque
and momentum. In Sec. V we address this issue and dis
how damping is changed in the presence of current.

D. Spin waves with current

In the preceeding section we derived the spin-wave sp
trum of a metallic ferromagnet in thermal equilibrium. Equ
tions ~17! and~18! establish a clear connection between sp
waves and quasiparticle distributions. In order to address
same problem in the presence of current, a nonequilibr
formalism is needed. By taking advantage of the formulat
discussed above in which collective excitations interact w
fermion particle-hole excitations we are able to appeal
established results for harmonic oscillators weakly coup
to a bath. In the equilibrium case, the fact that the lo
energy Hamiltonian for magnetization-orientation fluctu
tions is that of a harmonic oscillator follows by expandin
the fluctuation action to leading order inv to show thatŷ
andẑ direction fluctuations are canonically conjugate. In o
model magnons are coupled to a bath of spin-flip partic
hole excitations. Following system-bath weak coupling m
ter equation analyses26 we find that the collective dynamic
in the presence of a nonequilibrium current carrying qua
particle system differs from the equilibrium one simply b
replacing Fermi occupation numbers by the nonequilibri
occupation numbers of the current carrying state. The
lowing term therefore appears in the Taylor expansion of
Lindhardt functionG:

]G

]qi
U

q5v50

5
1

ND2 (
kW

]e~kW !

]ki
@nkW

↑
2nkW

↓
#. ~20!

Since this expression uses the easy directionx̂ as the spin-
quantization axis, thex ~spin! component of thespin current
is

JW [
e

\N (
kW

]e~kW !

]kW
@nkW

↑
2nkW

↓
# ~21!

so that

]G

]qi
U

q5v50

5
\

eD2
Ji . ~22!
2-5
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The quantityJi , the component of the spin current polariz
along the magnetization directionn5 x̂ and flowing along the
i axis, is the difference between the current carried by m
jority and minority carriers. In equilibrium there is no curre
and no linear term occurs in the wave-vector Taylor se
expansion, leading to quadratic magnon dispersion as
tained in Eq.~19!. When~charge! current flows through the
ferromagnet, the difference in carrier density and mobi
between majority and minority bands inevitably gives rise
a nonzero spin current.27 We therefore obtain the following
spectrum for spin waves in the presence of a current:

v5rq22
2U

3D

\

e
qW •JW . ~23!

This equation is the central result of our paper. Note that
in precise agreement with the single-mode-approxima
expression sinceD5(2U/3)(n↑2n↓); in that case, however
the explicit expression was derived for the case of fr
particle parabolic bands only. Equation~23! states that the
spin-wave spectrum of metallic ferromagnet driven by a c
rent is modified in proportion to the resulting spin curren

In the half-metallic case, when the density of minor
carriers is zero, the spin current is equal to the total curr
and we recover the result of BJZ.11 In that limit D
5(2U/3)n andr.\2/2m, leading to

v5
\2

2m
q22

\

en
qW • jW5

\2

2m
q22\qW •vW D , ~24!

where we have expressed the current asjW5envW D , with vW D
the drift velocity, generalizing the half-metallic simple Dop
pler shift result to nonparabolic bands.

E. Spin-wave instability

Equations~23! and ~24!, taken at face value, predict tha
the energy of a spin wave is negative and therefore that
uniform ferromagnetic state is destabilized by an arbitra
small current. If this were really true, it would presumably
a rather obvious and well-known experimental fact. It is n
true because spin-waves in real ferromagnetic materials h
a gap due to both spin-orbit interactions and magnetos
energy. We assume that the spin-wave gap does not de
on the spin current. Spin-wave gap in transition metals
originated by spin-orbit interactions.28 The quantitativeab
initio description the magnetic anisotropy is a difficult pro
lem even in the absence of current flow.29 Consequently, the
modification of the atomic part of the wave functions due
spin-current flow and the resulting change in the spin-o
interaction and magnetic anisotropy are not known. The
fore, following BJZ,11 we insert by hand this~ferromagnetic
resonance! gap, so that the spin-wave dispersion reads

v5v01rq22
2U

3D

\

e
qW •JW , ~25!

so that it takes acritical spin current to close the spin-wav
gap. In Fig. 2 we plot the current-driven spin-wave spectr
assumingv051 meV, the electronic density of iron (n
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51.1731023 cm23) and a Doppler shift given byqvD . The
critical current so estimated is;1.13109 A cm22 for a typi-
cal system. This critical current could be much lower, p
haps by several orders of magnitude, in metallic ferrom
nets in which material parameters have been tuned
minimize the spin-wave gap. Experimental searches
current-driven anomalies in permalloy thin films, for e
ample, could prove to be fruitful.

F. Spin-wave action with current

In the smallv and smallqW limit, the spin waves are in-
dependent and their action is equivalent to that of an
semble of noninteracting harmonic oscillators, indexed w
the label qW . The Matsubara action for a single oscillat
mode is the frequency sum of

@pqW ,xqW #S 1

2MqW
2 i

v

2

i
v

2

KqW

2

D FpqW

xqW
G , ~26!

where the diagonal terms are the Hamiltonian part of
action and the off-diagonal term can be interpreted as a B
phase. For the spin waves, the analog ofp andx are, modulo
some constants,dDy ,dDz . In this representation, the lowv
and lowqW spin-wave action reads

x'
21~v,qW !5S rqW •qW 2 iv

iv rqW •qW
D 1

2U

3D

\

e
JW •qW S 0 2 i

i 0 D .

~27!

This representation makes it clear that the spin-wave D
pler shift appears as a modification of the term whi
couples the canonically conjugate variables,dDy and dDz ,
i.e., the spin-wave Doppler shift modifies theBerry phase.
When expressed in this way, the spin-wave Doppler shif
partly analogous to the change in superfluid velocity in
superfluid that carries a finite mass current, and the stab
limit we have discussed is partly analogous to the Land
criterion for the critical velocity of a superfluid. These anal
gies are closer in the case of ideal easy-plane ferromagn

FIG. 2. Current modified spin-wave spectrum.
2-6



is

te

u
h
v

e
g
d

tro
t
l
s
s

a
ti
th
e
e

th
in
e
s

n
m

iv
es

s
io

n
t

ays
c-
s

he

o
for-

-
d in

INFLUENCE OF A UNIFORM CURRENT ON . . . PHYSICAL REVIEW B69, 174412 ~2004!
which like superfluids have collective modes with linear d
persion instead of having a gap.

IV. ALTERNATE DERIVATION OF SPIN-WAVE DOPPLER
SHIFT

In the preceding section we have used a functional in
gral approach to calculate how the spin-wavepropagatorof
a Hubbard model metallic ferromagnet is modified when c
rent flows through the system. The BJZ derivation of t
same effect was based on an identity at the operator le
BJZ used a sd model, i.e., a Hamiltonian for itinerant~s!
electrons interacting with localized~d! spins via an exchang
interaction. They considered the limit of very large exchan
interaction and lows electron density, so that, in the groun
state, the electrons are fully spin polarized. They then in
duced a local spin rotation transformation defined so thaat
every point of the spacethe spin of thes electrons is paralle
with the local value of thed electron magnetic moment. Thi
unitary transformation has been previously used for both
and other microscopic models of ferromagnetism.19,30–33In
the transformed frame, the exchange interaction is alw
diagonal in the spin index but the expression for the kine
energy is complicated, and includes new terms. One of
new terms couples thes electron current to a space derivativ
of the local spin magnetization. It is from this term in th
exchange energy that BJZ derived the modification of
Landau-Lifshitz equations that we have identified as a sp
wave Doppler shift. In this section we bridge the gap b
tween the two derivations. We recover the half-metallic
Hamiltonian result of BJZ in a systematic way.

The continuum sd model describes itinerant electro
cs , interacting with a continuum of localized quantu
spins,MW (xW ), through a exchange interaction of strengthJ.
The Hamiltonian for parabolic bands is given by

H5E dxW (
s,s8

cs
† S 2

\2¹W 2

2m
ds,s82

JtWs,s8
2

•MW ~xW ! Dcs8 ,

wheretW are the Pauli matrices. In order to derive an effect
theory for the collective behavior of this system, we expr
its partition function as a coherent state path integral:

Z5E D 2Cs~xW ,t!DVW ~t!

3expF2SB1E
0

b

dtC̄s8~]t2m!Cs82HG ,
where t is imaginary time, VW (xW ,t)5(1/S)MW (xW ,t)
5@cos(f)sin(u),sin(f)sin(u),cos(u)# is the unimodular vector
field which labels the spin coherent states,SB is the Berry
phase term that captures the spin commutation relation24

andC are the Grassmann numbers which label the ferm
coherent states.22

Following BJZ, we perform a unitary transformation o
the spins of the itinerant electrons so that, at each poin
time and space, the quantization axis is parallel toMW (xW ,t).
BJZ considered only the limit of very strong ferromagneticJ,
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so that the spins of the occupied electronic states are alw
parallel toMW (xW ,t) and we can ignore the antiparallel ele
trons. This approximation is valid in half-metallic system
for energies much smaller thanJ, the local spin splitting. In
this approximation the action for the parallel fermions in t
rotated frame, denoted byF(xW ,t), can then be written asS
5SB1S01S11S2, where

SB5E
0

b

dtE dxW iScSS 11
F̄F

2ScS
D cos~u!]tf,

S05E
0

b

dtE dxWF̄S ]t2m2
\2¹2

2m
2JSDF,

S15
\2

2mE
0

b

dtE dxW S (
i , j

“ iV j“ iV j D 1

4
F̄F,

S25
2

ecE0

b

dtE dxW @JW P1JW D#•AW ~V̂ !, ~28!

cS is the density of local moments with spinS, and AW (V̂)
5(\c/4)cos(u)¹W f is aneffectivevector potential which de-
pends on the local spin configuration,VW . In Eq.~28!, JW P and
JW D are respectivelyparamagneticanddiamagneticcontribu-
tions to the current density defined by

JW P[
e\

2mi
@F̄~xW ,t!¹W F~xW ,t!2¹W F̄~xW ,t!F~xW ,t!#,

JW D[
e

mc
F̄~xW ,t!F~xW ,t!AW ~V̂ !. ~29!

The JW P•AW coupling has the form anticipated by BJZ. T
address the magnetic elementary excitation spectrum we
mally integrate out the fermion fieldsF and expand to qua
dratic order in magnetic fluctuations. The action expresse
terms of only the spin fields isSeff(VW )5SB1Tr@ ln G 21#,
with

G 21~u,f!5]t2m2
\2

2m
S i¹W 2

AW

2c
D 2

1 i cos~u!]tf

1
\2

8m (
i , j

“ iV j“ iV j . ~30!

Expanding around thex̂ (u5p/2f50) direction we obtain
for the spin-wave action

Tr ln@G 21~u,f!#5Tr lnFG 21S p

2
,0D1dG 21~VW !G .

To leading order indG 21, the action reads
2-7
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S5SB~n!1E
0

bE dxW
\2n

8m (
i , j

“ iV j“ iV j

1
2

ecE0

bE dxW F jW1
en

mc
AW ~V̂ !G•AW ~V̂ !, ~31!

where

jW[TrFGS 0,
p

2 DJW P~xW ,t!G
is the average current and

n[TrFGS 0,
p

2 D F̄~xW ,t!F~xW ,t!G
is the average density in the collinear ground state. In de
ing this expression we allowed the mean-field fermion q
siparticle occupation numbers to assume values consis
with a nonequilibrium current carrying state.

Equation~31! defines a theory for the collective magne
zation of the ferromagnet. The first two terms are the Be
phase of thed spin and a renormalization of the Berry pha
due to the spin of thes electrons, similar to that derived b
Millis et al. for the double exchange model.31 The third term
describes the energy penalty for noncollinear configuratio
or spin stiffness. The terms in the second line yield the c
pling of the average~paramagnetic and diamagnetic! currents
to the collective magnetization.

The semiclassical equations of motion of Eq.~31!
yield the Landau-Lifshitz ~LL ! equations including the
j i“ iV3V term derived by BJZ@Eq. ~5!#. In the case of BJZ,
the LL equations are derived from a micromagnetic ene
functional plus the paramagnetic current term. In our ca
the whole functional is derived from the microscopic Ham
tonian. The spin-wave expansion for Eq.~31! around a clas-
sical homogeneous ground state,VW cl5 x̂ is obtained by ex-
panding VW 5VW cl1dVW and identifying dVy.f, dVz
.cos(u). Dropping terms of orderdV3 and higher, the ac-
tion ~31! becomes

SSW5
1

2bV (Q,ab
dVa~Q!Kab~Q!dVb~2Q!, ~32!

as in Eq.~15!. After analytical continuation, the spin-wav
kernel 1, in they,z representation:

x'
215cSS rq2 2 iS8v

iS8v rq2 D 1
\

e
jW•qW S 0 2 i

i 0 D , ~33!

wherer[n/cS , r[r (\2/4m), andS85S1(r /2). The main
difference between sd and Hubbard model result is the
pearance here of both local moment and itinerant elec
(r /2) contributions to the Berry phase, which is proportion
to the total spin density. Note that sinceAW is quadratic in the
spin-wave variables, the termAW 2 in Eq. ~31! gives no contri-
bution to Eq.~32!. After diagonalization of Eq.~33! we ob-
tain the retarded propagator for the spin-wave variables.
real and imaginary part of the poles of the retarded propa
17441
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In this theory, the imaginary part is zero, since the spin flip
quasiparticles is blocked. The real part reads

v5F\2nqW 2

4Sm
2

\

2Se
jW•qW G3

1

cSS 11
n

2ScS
D . ~34!

Hence, we see how the spin-wave dispersion in t
theory has theqW • jW term derived by BJZ. Since the syste
described by the theory is fully polarized, the current and
spin current~polarized along the ground-state magnetizat
direction! are identical. This result is to be compared wi
Eq. ~24!, derived with a different method for a different m
croscopic model. We conclude that spin-wave Doppler sh
due to spin currents are generic, although their quantita
details can depend on the microscopic physics of the fe
magnet.

V. ENHANCED SPIN-WAVE DAMPING AT FINITE
CURRENT

In Secs. III and IV we have shown how the dispersion
spin waves in a metallic ferromagnet is affected by curr
flow, and we have obtained results compatible with those
BJZ.11 In this section we address a problem which, to o
knowledge, has remained unexplored so far: how does
current flow affect the lifetime of the spin waves. In Sec. V
we analyze the damping of spin waves at zero current
Secs. V B and V C we discuss how these results are mod
by the presence of a current.

A ferromagnetic resonance experiment probes the dyn
ics of the coherent orqW 50 spin-wave mode. The signal line
width is inversely proportional to the coherent mode lifetim
the time that it takes for a transverse magnetic fluctuation
relax back to zero. Spin waves have a finite lifetime beca
they are coupled to each other and to other degrees of f
dom, including phonons and electronic quasiparticles. In
romagnetic metals, the quasiparticles are an important pa
the dissipative environment of the spin waves,34–37 and we
can therefore expect that quasiparticle current flow affe
the spin-wave lifetime to some degree. In order to disc
this effect, it is useful to first develop the theory of quasip
ticle spin-wave damping in equilibrium.

A. Damping at zero current

The elementary excitation energies for the ferromagn
phase of the Hubbard model are specified by the location
poles in Eq.~17!. The damping rate is proportional to th
imaginary part of the transverse fluctuation propagator. A
cording to Eq.~17!, the damping of a spin wave with fre
quencyv and momentumqW , g(qW ,v)522 Im@G(v,qW )# is
given by

g~qW ,v!5
2p

N (
kW

@nkW
↑
2nkW1qW

↓
#d@ekW

↑
2ekW1qW

↓
1v#. ~35!
2-8
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In the absence of disorder, this quantity is nonzero whenuqW u
is comparable tokF↑2kF↓ or when v.D, the band spin
splitting. Either disorder, which breaks translational symm
try leading to violations of momentum conservation select
rules, or spin-orbit interactions, which cause all quasipa
cles to have mixed spin character, will lead to a finite el
tronic damping rate at characteristic collective motion f
quencies. Because this damping is extrinsic, however,
numerical value is usually difficult to estimate. It is often n
known whether coupling to electronic quasiparticle
phonons, or other degrees of freedom dominates the da
ing.

Formally, generalizing Eq.~35! to the case with disorde
and spin-orbit interactions leads to

g~v!} (
kW ,kW8,n,n8

Sn,n8~kW ,kW8!~nkW
n
2nkW8

n8!d@ekW
n
2ekW8

n81v#,

~36!

whereSn,n8(k
W ,kW8)[u^kW ,nuS(2)ukW8,n8&u2 is a matrix element

between disorder broadened initial and final quasipart
states, labeled by momentumkW and band indexn ~but not
Bloch states!. Averaging out the extrinsic dependence
wave-vector labels by lettingSn,n8(k

W ,kW8)→Sn,n8 , we obtain

g~v!5n2(
n,n8

Sn,n8E deE de8Nn~e!Nn8~e8!

3@n~e!2n~e8!#d@e2e81v#, ~37!

whereNn(e) is the density of states of the bandn. For v of
the order of the ferromagnetic resonance frequency, we
expand Eq.~37! to lowest order inv:

g~v!.vFn2(
n,n8

Sn,n8Nn~eF!Nn8~eF!G . ~38!

This result can be considered a microscopic justification
the Gilbert damping law, which states that the damping r
is linearly proportional to the resonance frequency and v
ishes atv50. The proportionality between frequency an
damping rate follows from phase-space considerations:
higher the spin-wave frequencyv, the larger the number o
quasiparticle spin-flip processes compatible with energy c
servation.

B. Damping at finite current

We analyze how a current modifies quasiparticle dam
ing, we again appeal to the picture of magnons as harm
oscillators coupled to a bath of particle-hole excitations a
borrow results from master equation results for oscillat
weakly coupled to a bath.26 For magnetization in the ‘‘↑ ’’
direction, magnon creation is accompanied by quasiparti
spin raising and magnon annihilation is accompanied
quasiparticle-spin lowering. It turns out26 that only the dif-
ference between the rate of quasiparticle up-to-down
quasiparticle down-to-up transitions enters the equation
describes the magnetization evolution. This transition r
difference leads to the same combination of quasiparticle
17441
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cupation numbers as in Eq.~38!, except that the occupatio
numbers characterize the current carrying state and are
Fermi factors. For metals we can use the standard appr
mate form38 for the quasiparticle distribution function in
current carrying state:

gkW
n
5nkW

n
2eEW •vW n~kW !tn~ekW

n
!F2

]n

]e Ue5e
kW
nG . ~39!

Because of the independent sums overkW andk8W in Eq. ~36!,
and because it is a simple difference of Fermi factors t
enters the damping expression, we conclude that the qu
particle damping correction will vanish to leading order
the spin-dependent drift velocitiesvD

s . We reach this conclu-
sion even though the phase space for spin-flip quasipar
transitions at the spin-wave energy is altered by a factor;1
wheneF3(vD /vF);e0, whereeF is a characteristic quasi
particle energy scale, i.e., the up-to-down and down-to
transition rates change significantly when this condition
met, but not their difference. To obtain a crude estimate
the current at which this condition is satisfied we use
following data38 for iron: n'1.731023, Fermi velocity
;1.983108 cm s21. The drift velocity corresponding to a
current density of 10b A cm22 is vd5 j /en.10b24

cm s21. The typical energy of a long-wavelength magnon
;1026 eV. Therefore, current densities of the order
106 A cm22 and larger will substantially change the couplin
of spin waves to their quasiparticle environment. Althou
this change will influence the spin-wave density matr
magnetization fluctuation damping itself will not be alter
by this mechanism until much stronger currents are reach

C. Two-magnon damping

In the previous sections we have calculated the damp
of the lowest-energy spin wave due to its coupling to t
reservoir of quasiparticles. In this section we study damp
of the coherent rotation mode (qW 50 spin wave! due to its
coupling to finiteqW spin waves. This mechanism is known
two-magnon scatteringand is efficient when the coheren
rotation mode is degenerate with finiteqW spin waves,39 a
circumstance that sometimes arises due to magnetostati
teractions. The main point we wish to raise here is that
cause of the spin-wave Doppler shift, precisely this situat
arises when the ferromagnet is driven by a current. As in
preceding section, we assume that some type of disorder
momentum conservation. The effective Hamiltonian for t
spin waves reads

H5v0b0
†b01 (

qW Þ0

v~qW !bqW
†
bqW1b0

†(
qW Þ0

gqW

AV
bqW1H.c.,

~40!

wherebqW is the annihilation operator for the spin wave wi
momentumqW and gqW is some unspecified matrix eleme
accounting for disorder-induced elastic scattering of the s
waves. Equation~40! is the well Hamiltonian known for a
damped harmonic oscillator and can be solved exactly.
damping rate for theqW 50 spin wave reads
2-9
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g~JW !5
2p

\ E dqW

~2p!3
ugqW u2d~v02vqW !. ~41!

Now we usev02vqW5rq22aqW •JW . After a straightforward
calculation we obtain

g~JW !5
g2

4p

auJW u

r2
, ~42!

where we have approximatedgqW.g. Hence, in the presenc
of elastic spin-wave scattering, renormalization of the sp
wave spectrum due to the current will enhance the damp
of the lowest spin-wave mode. Unlike the Gilbert model, t
damping rate given by Eq.~42! is independent ofv0, imply-
ing that the dimensionless Gilbert damping coefficient wo
decline with external field if this mechanism were domina

VI. SPIN-WAVE DOPPLER SHIFT AS A SPIN-TORQUE
EFFECT

In this section we explain how the influence of an unifo
current on magnetization dynamics can be understood
special case of a spin-torque effect.2,3 The latter takes place
when a spin current coming from a magnet spin polariz
alongMW 1 enters in a magnet spin polarized alongMW 2. In this
circumstance there is an imbalance between the incom
and the outgoing transverse component~with respect toMW 2)
of the spin currents in magnet 2. Because of spin conse
tion ~resulting from the rotational invariance of the system!,
the imbalance in the spin flux across the boundaries of m
net 2must be compensatedby a change of the magnetizatio
of that magnet, which is described by a new term in
Landau Lifshitz equation.2,3 The microscopic origin of the
spin-current imbalance can be understood as a destru
interference effect, originated by the fact that the steady-s
spin current is a sum over stationary states with broad di
bution in momentum space.2 Alternatively, it is possible to
understand the spin-current flux imbalance as a destruc
interference in the time domain. At a given instant of tim
the outgoing current carrying quasiparticles have elapse
different amount of time in magnet 2. This broadening in t
interaction time distribution results in a broadening of t
spin precession angle.40 The average over that distributio
results in a vanishing transverse spin component of the
going flux.

The above argument, connecting spin flux imbalance
spin torque, applies to a system in which the inhomogene
magnetization is described by piecewise constant functio
is our contention that the spin-wave Doppler shift can
understood by applying the same argument to the cas
smoothly varying magnetization. We consider again a m
net with charge currentjW and spin currentJW . We assume tha
current flows in thex̂ direction and, importantly, that the spi
current is locally parallel to the magnetization orientati
JW (x)5 j sV̂(x). It can be shown that this is the case in a wi
range of situations.

The spin density readsSW (x)5S0V̂(x), whereS0 is the
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average spin polarization. We focus on the slab centeredx
and bounded byx2dx and x1dx. Spins are injected into
the slab at the ratej sV̂(x2dx) and leave at the ratej sV̂(x
1dx). The resulting spin-current imbalance is 2dx js]xV̂.
Therefore, there must be a spin transfer to the local mag
tization:

]SW ~x!

]t
U

ST

5 j s]xV̂. ~43!

Now, usinguV̂u251 at every point of the space we obtain

]SW ~x!

]t
U

ST

5 j sV̂~x!3@]xV̂~x!3V̂~x!#, ~44!

which is exactly the same result obtained in~11!. Including
this term in the Landau-Lifshitz equation and solving f
small perturbations around the homogeneous ground s
~spin waves! results into the spin-wave Doppler shift dis
cussed in previous sections. In conclusion, this argum
demonstrates that the spin-wave Doppler shift and spin tra
fer torques are different limits of the same physical pheno
ena, the transfer of angular momentum from the quasipa
cles to the collective magnetization whenever the latter is
spatially uniform.

VII. DISCUSSION AND CONCLUSIONS

The effect of high current densities on the magnetizat
dynamics of ferromagnetic metals have been explored
perimentally in several configurations. In point contact e
periments, a large current density is injected from a norm
metallic contact into a ferromagnetic multilayer4,5 or single
layer.8 When a large flow of electrons~current densityj
.108 A cm22) enters into the ferromagnetic multilayer, th
resistivity presents an abrupt increase which has been re
to the coherent precession of spin waves4 and/or phonons.5

The fact that Jiet al.8 report similar results when the curren
is injected into a a single ferromagnetic layer demonstra
that interlayer coupling is not essential for the anomal
observed in transport. It must be noted that when the cur
flow is such that the electrons go from the ferromagne
layer~s! toward the point contact, no anomaly is observe
Similar transport anomalies at current densities higher t
those of current-induced magnetization switching are
served by a number of different groups7 in a system of two
adjacent ferromagnetic nanopillars. In this system a la
current density flows from one ferromagnet to the other.

The fact that the current densities at which the anomal
behavior takes place is of the same order of magnitude t
the current at which the spin-wave Doppler shift makes
collinear state unstable might lead to suggest a connec
between the two. However, the experiments in the point c
tact geometry show that the transport anomalies only oc
for one direction of the current, something which seems
odds with the spin-wave Doppler shift instability.

In summary, the focus of this paper is on the effect of t
current in the spin-wave dynamics of a bulk ferromagne
metal. We have addressed two types of effects: the chang
2-10
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the spin-wave dispersion and change in the spin-wave da
ing. These quantities are given, at a formal level, by
spin-wave propagator. The central idea is that the spin-w
propagator is a functional of the quasiparticle occupat
function. In the presence of the current the occupation fu
tion changes, affecting both the dispersion and the damp
of the spin-waves. Throughout the paper we have assu
that the functional relation between the quasiparticle occu
tion function and the spin-wave propagator remains the s
when the system is out of equilibrium. In that sense,
above derivations are heuristic. Our main conclusions are~i!
a currentjW flowing through a metallic ferromagnet results27

in a spin currentJW which modifies its spin-wave spectrum b
an amount proportional toqW •JW ; ~ii ! this modification, which
was derived by BJZ for a fully polarized sd model, occurs
well in a non fully polarized Hubbard model, in which thed
electrons are itinerant and, according to the argument
Sec. II, in typical real-world ferromagnets;~iii ! in the pres-
o

tu
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u-

t,

e

l.

e

-

17441
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ence of elastic two-magnon scattering, the spin-wave D
pler shift leads as well to a broadening of the lowest sp
wave mode@Eq. ~42!#, which is proportional to the spin
current; ~iv! both the spin-wave Doppler shift in spatiall
homogeneous ferromagnets and the spin-torque effect in
homogenoeus structures2,3 are a consequence of the sp
transfer from the quasiparticles to the collective magneti
tion when the latter is spatially inhomogeneous.
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