602 research outputs found

    Evaluating system utility and conceptual fit using CASSM

    Get PDF
    There is a wealth of user-centred evaluation methods (UEMs) to support the analyst in assessing interactive systems. Many of these support detailed aspects of use – for example: Is the feedback helpful? Are labels appropriate? Is the task structure optimal? Few UEMs encourage the analyst to step back and consider how well a system supports users’ conceptual understandings and system utility. In this paper, we present CASSM, a method which focuses on the quality of ‘fit’ between users and an interactive system. We describe the methodology of conducting a CASSM analysis and illustrate the approach with three contrasting worked examples (a robotic arm, a digital library system and a drawing tool) that demonstrate different depths of analysis. We show how CASSM can help identify re-design possibilities to improve system utility. CASSM complements established evaluation methods by focusing on conceptual structures rather than procedures. Prototype tool support for completing a CASSM analysis is provided by Cassata, an open source development

    Cross-Correlation of the Cosmic Microwave Background with the 2MASS Galaxy Survey: Signatures of Dark Energy, Hot Gas, and Point Sources

    Full text link
    We cross-correlate the Cosmic Microwave Background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modelling the theoretical expectation for this signal, we extract the signatures of dark energy (Integrated Sachs-Wolfe effect;ISW), hot gas (thermal Sunyaev-Zeldovich effect;thermal SZ), and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1-3.7 \sigma level, which is consistent with the theoretical prediction based on observations of X-ray clusters. We also see the ISW signal at the 2.5 \sigma level, which is consistent with the expected value for the concordance LCDM cosmology, and is an independent signature of the presence of dark energy in the universe. Finally, we see the signature of microwave point sources at the 2.7 \sigma level.Comment: 35 pages (preprint format), 8 figures. In addition to minor revisions based on referee's comments, after correcting for a bug in the code, the SZ detection is consistent with the X-ray observations. Accepeted for publication in Physical Review

    Kiyang-yang, a West-African Postwar Idiom of Distress

    Get PDF
    In 1984, a healing cult for young barren women in southern Guinea Bissau developed into a movement, Kiyang-yang, that shook society to its foundations and had national repercussions. “Idiom of distress” is used here as a heuristic tool to understand how Kiyang-yang was able to link war and post-war-related traumatic stress and suffering on both individual and group levels. An individual experience born from a traumatic origin may be generalized into an idiom that diverse sectors of society could embrace for a range of related reasons. We argue that, for an idiom to be understood and appropriated by others, there has to be resonance at the level of symbolic language and shared experiences as well as at the level of the culturally mediated contingent emotions it communicates. We also argue that through its symbolic references to structural causes of suffering, an idiom of distress entails a danger for those in power. It can continue to exist only if its etiology is not exposed or the social suffering it articulates is not eliminated. We finally argue that idioms of distress are not to be understood as discrete diagnostic categories or as monodimensional expressions of “trauma” that can be addressed

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    LAr1-ND: Testing Neutrino Anomalies with Multiple LArTPC Detectors at Fermilab

    Get PDF
    This white paper describes LAr1-ND and the compelling physics it brings first in Phase 1 and next towards the full LAr1 program. In addition, LAr1-ND serves as a key step in the development toward large-scale LArTPC detectors. Its development goals will encompass testing existing and possibly innovative designs for LBNE while at the same time providing a training ground for teams working towards LBNE combining timely neutrino physics with experience in detector development
    corecore