102 research outputs found

    Dysfunction of the Heteromeric KV7.3/KV7.5 Potassium Channel is Associated with Autism Spectrum Disorders

    Get PDF
    Heterozygous mutations in the KCNQ3 gene on chromosome 8q24 encoding the voltage-gated potassium channel KV7.3 subunit have previously been associated with rolandic epilepsy and idiopathic generalized epilepsy (IGE) including benign neonatal convulsions. We identified a de novo t(3;8) (q21;q24) translocation truncating KCNQ3 in a boy with childhood autism. In addition, we identified a c.1720C > T [p.P574S] nucleotide change in three unrelated individuals with childhood autism and no history of convulsions. This nucleotide change was previously reported in patients with rolandic epilepsy or IGE and has now been annotated as a very rare SNP (rs74582884) in dbSNP. The p.P574S KV7.3 variant significantly reduced potassium current amplitude in Xenopus laevis oocytes when co-expressed with KV7.5 but not with KV7.2 or KV7.4. The nucleotide change did not affect trafficking of heteromeric mutant KV7.3/2, KV7.3/4, or KV7.3/5 channels in HEK 293 cells or primary rat hippocampal neurons. Our results suggest that dysfunction of the heteromeric KV7.3/5 channel is implicated in the pathogenesis of some forms of autism spectrum disorders, epilepsy, and possibly other psychiatric disorders and therefore, KCNQ3 and KCNQ5 are suggested as candidate genes for these disorders

    Vitamin D Deficiency and Exogenous Vitamin D Excess Similarly Increase Diffuse Atherosclerotic Calcification in Apolipoprotein E Knockout Mice

    Get PDF
    Background: Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol) administration in apolipoprotein E knockout mice. Methods: Mice were fed atherogenic diets with normal vitamin D content (1.5IU/kg) or without vitamin D. Paricalcitol, or matched vehicle, was administered 3× weekly by intraperitoneal injection. Following 20 weeks of these interventions cardiovascular phenotype was characterized by histological assessment of aortic sinus atheroma, soluble markers, blood pressure and echocardiography. To place the cardiovascular assessments in the context of intervention effects on bone, structural changes at the tibia were assessed by microtomography. Results: Vitamin D deficient diet induced significant reductions in plasma vitamin D (p<0.001), trabecular bone volume (p<0.01) and bone mineral density (p<0.005). These changes were accompanied by an increase in calcification density (number of calcifications per mm2) of von Kossa-stained aortic sinus atheroma (461 versus 200, p<0.01). Paricalcitol administration suppressed parathyroid hormone (p<0.001), elevated plasma calcium phosphate product (p<0.005) and induced an increase in calcification density (472 versus 200, p<0.005) similar to that seen with vitamin D deficiency. Atheroma burden, blood pressure, metabolic profile and measures of left ventricular hypertrophy were unaffected by the interventions. Conclusion: Vitamin D deficiency, as well as excess, increases atherosclerotic calcification. This phenotype is induced before other measures of cardiovascular pathology associated clinically with vitamin D deficiency. Thus, maintenance of an optimal range of vitamin D signalling may be important for prevention of atherosclerotic calcification

    Association of early life factors and acute lymphoblastic leukaemia in childhood: historical cohort study

    Get PDF
    In a historical cohort study of all singleton live births in Northern Ireland from 1971–86 (n=434 933) associations between early life factors and childhood acute lymphoblastic leukaemia were investigated. Multivariable analyses showed a positive association between high paternal age (⩾35 years) and acute lymphoblastic leukaemia (relative risk=1.49; 95% confidence interval (CI)=0.96–2.31) but no association with maternal age. High birth weight (⩾3500 g) was positively associated with acute lymphoblastic leukaemia (relative risk=1.66; 95% CI=1.18–2.33). Children of mothers with a previous miscarriage or increased gestation (⩾40 weeks) had reduced risks of ALL (respective relative risks=0.49; 95% CI=0.29–0.80, and 0.67; 95% CI=0.48–0.94). Children born into more crowded households (⩾1 person per room) had substantially lower risks than children born into less crowded homes with also some evidence of a lower risk for children born into homes with three adults (relative risks=0.56; 95% CI=0.35–0.91 and 0.58; 95% CI=0.21–1.61 respectively). These findings indicate that several early life factors, including living conditions in childhood and maternal miscarriage history, influence risk of acute lymphoblastic leukaemia in childhood

    Endothelium-derived Vasoactive Factors and Hypertension: Possible Roles in Pathogenesis and as Treatment Targets

    Get PDF
    Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase–soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD

    Skin Cancer:Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches

    Get PDF
    Skin cancer, including both melanoma and non-melanoma, is the most common type of malignancy in the Caucasian population. Firstly, we review the evidence for the observed increase in the incidence of skin cancer over recent decades, and investigate whether this is a true increase or an artefact of greater screening and over-diagnosis. Prevention strategies are also discussed. Secondly, we discuss the complexities and challenges encountered when diagnosing and developing treatment strategies for skin cancer. Key case studies are presented that highlight the practic challenges of choosing the most appropriate treatment for patients with skin cancer. Thirdly, we consider the potential risks and benefits of increased sun exposure. However, this is discussed in terms of the possibility that the avoidance of sun exposure in order to reduce the risk of skin cancer may be less important than the reduction in all-cause mortality as a result of the potential benefits of increased exposure to the sun. Finally, we consider common questions on human papillomavirus infection

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe
    corecore