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Abstract

Background: Genetic selection has been successful in achieving increased production in dairy cattle; however,
corresponding declines in fitness traits have been documented. Selection for fitness traits is more difficult, since they
have low heritabilities and are influenced by various non-genetic factors. The objective of this paper was to
investigate the predictive ability of two-stage and single-step genomic selection methods applied to health data
collected from on-farm computer systems in the U.S.

Methods: Implementation of single-trait and two-trait sire models was investigated using BayesA and single-step
methods for mastitis and somatic cell score. Variance components were estimated. The complete dataset was divided
into training and validation sets to perform model comparison. Estimated sire breeding values were used to estimate
the number of daughters expected to develop mastitis. Predictive ability of each model was assessed by the sum of
χ2 values that compared predicted and observed numbers of daughters with mastitis and the proportion of wrong
predictions.

Results: According to the model applied, estimated heritabilities of liability to mastitis ranged from 0.05 (SD = 0.02)
to 0.11 (SD = 0.03) and estimated heritabilities of somatic cell score ranged from 0.08 (SD = 0.01) to 0.18 (SD = 0.03).
Posterior mean of genetic correlation between mastitis and somatic cell score was equal to 0.63 (SD = 0.17). The
single-step method had the best predictive ability. Conversely, the smallest number of wrong predictions was
obtained with the univariate BayesA model. The best model fit was found for single-step and pedigree-based models.
Bivariate single-step analysis had a better predictive ability than bivariate BayesA; however, the latter led to the
smallest number of wrong predictions.

Conclusions: Genomic data improved our ability to predict animal breeding values. Performance of genomic
selection methods depends on a multitude of factors. Heritability of traits and reliability of genotyped individuals has
a large impact on the performance of genomic evaluation methods. Given the current characteristics of
producer-recorded health data, single-step methods have several advantages compared to two-step methods.

Background
Genetic selection has been very successful in achiev-
ing increased production in dairy cattle. Consequently,
corresponding declines in fitness and fertility have been
documented [1]. Fitness and fertility traits are more diffi-
cult to select for, since they have low heritabilities and are
influenced by various non-genetic factors. Improvement
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of functional traits through genomic selection is an
appealing tool because the changes can be considered
long-lasting. Currently, genomic selection methodologies
are widely investigated and implemented in dairy cattle
breeding [2,3], as well as for other species [4,5]; however,
much of this research was aimed at traditional traits, such
as those related to production [2,6].
In 2001, Meuwissen et al. [7] showed that all avail-

able molecular markers could be used to predict genomic
values for quantitative traits. This article introduced
two Bayesian procedures to estimate genomic values,
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termed BayesA and BayesB, which have now been
expanded upon and are collectively referred to as the
“Bayesian Alphabet” [8]. These multi-stage methods esti-
mate individual marker effects using both phenotyping
and genotyping data. In a typical multi-stage genomic
procedure, such as that described by VanRaden [9], tra-
ditional breeding values are calculated using best linear
unbiased prediction (as opposed to best linear unbiased
n) (BLUP) methodology [10] for animals with genotyping
information. Estimated breeding values can then be dere-
gressed to remove bias and to account for heterogeneous
variances, and are used as “pseudo-phenotypes” (dEBV)
[11]. Performance of response variables has been shown
to depend on heritability of the trait, number of daughters
per sire, number of animals genotyped, and type of sta-
tistical model applied in the simulation studies [12]. This
is particularly problematic when working with categorical
traits on a liability scale, in addition to having low relia-
bilities. Genomic effects for each marker can be estimated
and used to calculate direct genomic values (DGV) for
each genotyped animal. The DGV can be further com-
bined with traditional measurements of merit, including
parent average (PA) and estimated breeding value (EBV),
to calculate a breeding value that accounts for phenotype,
pedigree, and genotype information [9].
A single-step method was proposed as an alternative to

multi-stage approaches [13-15]. It is nowmore commonly
referred to as single-step genomic BLUP, but for compara-
tive purposes to two-stagemethods, we will refer to it only
as single-step herein. The single-step procedure replaces
pedigree (A) and genomic (G) relationship matrices with
a blended H matrix [15,16] that combines information
from both A and G. This permits the simultaneous esti-
mation of breeding values while accounting for population
structure, and can also account for systematic effects such
as genomic pre-selection bias [17]. Substitution of A by
matrix H enables this method to be easily expanded to
more complex models, such as multivariate or random
regression models [18].
One goal when incorporating genomic data is to

increase the reliability of estimated breeding values. Typ-
ically, the reliabilities of genetic evaluations of health
traits are low; thus, these traits may benefit greatly from
including genomic data. This has been previously demon-
strated with producer-recorded health data on six com-
mon health issues [19]. High-density genomic data may
improve reliability even more by improving predictions.
Improvement in reliability is a key component to the
success of genomic selection, but improvement cannot
be evaluated for the same population as that used to
develop the prediction model [20]. To evaluate the perfor-
mance of genomic evaluation methods, cross-validation
is often performed. A training population is used to esti-
mate marker effects from animals with both genotypes

and phenotypes. Estimatedmarker effects are then used in
the validation population to evaluate the predictionmodel
using trait phenotypes. Data are split into training and
validation groups using one of several methods, such as
splitting based on birth year or relationship.
Comparison between the performance of two-stage and

single-step methodologies is difficult regardless of the
trait. Two-stage methods provide an estimate of DGV,
which should ideally be blended with other sources of
information (i.e., pedigree data, parent average) before
calculating a measure of reliability. Numerous approaches
to estimate reliability of two-stage estimates have been
used (e.g., [12,21,22]). The single-step method combines
genomic data and pedigree data within the analysis. An
approximation method to estimate reliability of single-
step results has been developed [23]. Predictive ability
of future records can be assessed as opposed to directly
comparing the different methodologies. Cross-validation
of a model’s predictive ability has already been applied
on dairy cattle data, including for functional traits such
as number of inseminations to conception [24], daughter
longevity [25], and mastitis [26].
Methods to extend two-stage methods from univari-

ate to multivariate models are currently being investi-
gated. Calus and Veerkamp [27] used simulated data to
investigate the performance of three marker-based mod-
els in multiple-trait analyses. They found that accuracies
increased, in particular for young animals with no phe-
notype, when using a multiple-trait model compared to a
single-trait model. To expand upon these results, Jia and
Jannink [28] investigated three multivariate linear models
using both simulated and real data. Their results indi-
cated that prediction accuracy for lowly heritable traits
could be significantly increased by multivariate genomic
selection when a correlated trait with a higher heritability
was included. However, currently there is little literature
on the implementation of multivariate two-stage genomic
models with non-simulated data.
Several studies have analyzed functional and production

traits using genomic data [22,29], although many of these
were conducted outside the U.S. The fact that there is only
a limited amount of research on the genomic evaluation
of health traits in the U.S. may be due in part to a lack of
documented phenotypes. Producer-recorded health infor-
mation from U.S. dairies may be able to fill this gap and
provide health-related phenotypes. The objective of this
study was to investigate the predictive ability of two-
stage and single-step genomic methods applied to health
data collected from on-farm computer systems in the U.S.
Implementation of univariate and bivariate models was
investigated using BayesA and single-step methodologies
for mastitis and somatic cell score (SCS). A BayesA model
was chosen since this is the method being implemented in
the U.S. Mastitis was selected from the producer-recorded
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health data because of the large impact it has on the dairy
industry. Somatic cell score provides a corresponding trait
that has a higher heritability and is commonly used as an
indicator trait for mastitis. Currently, in the U.S., SCS and
an udder composite are incorporated as indicators of mas-
titis in genetic evaluations. Traits included in the udder
composite include more structural features such as udder
depth, teat placement, and rear udder height [30]. Greater
and more rapid improvement may be possible if direct
records of mastitis were used as opposed to these indirect
measures.

Methods
Data
Producer-recorded health data fromU.S. dairy farms were
available from 1998 through 2012. Mastitis events were
assigned to a lactation, with lactations beginning with a
calving. Only the first mastitis occurrence per lactation
was included for each cow. Occurrences of mastitis from
first parity cows were selected for analysis. Minimum and
maximum reporting contraints were imposed on the data
by herd-year. Lactations lasting up to 400 days postpartum
were included in the analyses. Additional general editing
was applied to the data as described by Parker Gaddis et
al. [31]. To ensure that sires included in the analyses could
be equally compared across analyses, additional restric-
tions were placed on the data. Sires were required to have

at least 15 daughters with mastitis records. The num-
ber of daughter records per sire ranged from 17 to 1409,
with a median number of daughters per sire equal to 87.
Older sires may have had granddaughters with phenotype
records. If this occurred, these records were removed to
ensure that all sires were represented equally. All analyses
were also performed with datasets without applying the
additional daughter restrictions. This was done such that
performance in a more typical health dataset (more sires
with fewer daughters) could be evaluated. The data with-
out applying daughter restrictions will be referred to as
DATAfull; data with daughter restrictions will be referred
to as DATAdtr throughout.
Descriptive statistics for the data are in Table 1. Before

applying daughter restrictions, DATAfull included 97 310
mastitis records from first parity cows. These cows
were from 10 549 sires and 11 040 maternal grandsires.
DATAdtr included 26 510 mastitis records from first par-
ity cows. Records were from 177 sires and 4328 maternal
grandsires. Records included 52 year-seasons and 2210
herd-years. Training and validation datasets were created
by splitting each full dataset based on year. Records before
2009 were included in the training data; records for 2009
and later were included in the validation data. This was
done to reflect the true accumulation of data that occurs
in the dairy industry. Mean lactation incidence rate of
mastitis in the full DATAdtr was estimated at 10.5%. Mean

Table 1 Descriptive statistics for full, training, and validation datasets with and without daughter restrictions enforced

Data without daughter restrictions

Full data Training data Validation data

Years included 1999 - 2012 1999 - 2008 2009 - 2012

Number of cows 97 310 79 147 18 163

Number of mastitis incidences 10 442 8391 2051

Number of sires 10 549 8410 3269

Number of maternal grandsires 11 040 8938 3636

Average number of daughters per sire 9 9 6

Average mastitis incidence 0.107 0.106 0.113

Average mastitis incidence per sire 0.104 0.104 0.113

Data with daughter restrictions

Full data Training data Validation data

Years included 1999 - 2012 1999 - 2008 2009 - 2012

Number of cows 26 510 23 753 2757

Number of mastitis incidences 2771 2422 349

Number of sires 177 153 59

Number of maternal grandsires 4328 3823 909

Median number of daughters per sire 87 91 37

Average mastitis incidence 0.105 0.102 0.130

Average mastitis incidence per sire 0.106 0.100 0.140
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lactation incidence rate of mastitis in training and vali-
dation datasets were similarly equal to 10.2% and 13.0%,
respectively. Despite the small dataset, these incidence
values were similar to those in DATAfull, as well as to
incidences previously reported in the literature [32-34].
Genomic data from the Illumina BovineSNP50 Bead-

Chip (Illumina Inc., San Diego, CA) were available for
7883 sires. Standard filters were previously applied to the
marker data, including removing SNPs with minor allele
frequencies less than 0.05 and SNPs that were in com-
plete linkage disequilibrium with other SNPs, resulting in
a final marker set of 37 506. There were 177 genotyped
sires that had at least 15 daughter records in the final
dataset. High-density (HD) genotypes were also available
for 1371 sires. Similar editing procedures were applied to
these data, including removal of SNPs with minor allele
frequencies less than 0.05 and SNPs that were in complete
linkage disequilibrium. This resulted in a dataset of 281
868markers for 177 sires with at least 15 daughter records.
A full summary of these data is in Table 1.

BayesA analyses
Traditional EBV were calculated using THRGIBBS1F90
(version 2.104) [35] by fitting the single-trait threshold
model below:

λ = Xβ + Zhh + Zss + e

where λ represents a vector of unobserved liabilities to
mastitis or SCS, β is a vector of fixed effects including
year-season, X is the corresponding incidence matrix for
fixed effects, h represents the random herd-year effect,
where h ∼ N

(
0, Iσ 2

h
)
with I representing an identity

matrix, s represents the random sire effect, where s ∼
N

(
0,Aσ 2

s
)
with A representing the additive relationship

matrix, Zh and Zs represent corresponding incidence
matrices for the appropriate random effect, and e repre-
sents the random residual, assumed to be distributed as
e ∼ N(0, I). Residual variance was fixed at 1 for identifia-
bility. A probit link was used to transform event incidence
to liability. A total of 100 000 iterations were performed,
with the first 10 000 iterations discarded as burn-in for
both full and training datasets. Every 10th sample was
saved to reduce autocorrelation. This resulted in a total
of 9000 samples used for post-Gibbs analyses completed
using POSTGIBBSF90 (version 3.04) [36], including visual
inspection of trace plots and posterior distributions. Con-
vergence was also assessed by calculating Geweke’s con-
vergence statistic [37] with the coda package [38] in
R (version 2.15.1) [39]. Variance components, standard
deviations, and 95% highest posterior densities were cal-
culated from the resulting posterior distributions. Highest
posterior densities were calculated with the coda package
[38] in R (version 3.0.2) [40]. Estimated breeding values

were calculated by doubling estimated sire effects. Relia-
bilities of sire EBV were estimated using ACCF90 (version
1.67) [36].
Single-trait BayesA analyses were performed using the

GenSel software (version 4.25R) [41]. EBV of mastitis and
SCS were deregressed by a function of reliability given
by 1/(1−reliability), which was scaled to have a mean
equal to 1 [29]. A single-trait analysis of mastitis using
unweighted EBVwas also performed for comparative pur-
poses. All markers were included as predictors in the
model, with deregressed EBV as the response variable to
predict marker effects. Weights were effectively incorpo-
rated as elements of an inverse diagonal matrix of residual
variance. Themodel for univariate analyses ofmastitis and
SCS is given below:

yi = μ +
k∑

j=1
zijuj + ei

where yi is the deregressed EBV for sire i, μ is the overall
mean, zij is the genotype of sire i at marker j, uj is the effect
of marker j, and ei represents random error distributed
followingN

(
0, Iσ 2

e
)
. A chain of 300 000 iterations with the

first 50 000 iterations discarded as burn-in, saving every
100 samples was performed for both the full and training
datasets. This resulted in a total of 2500 samples. Accu-
racy of BayesA analyses were calculated following Saatchi
et al. [20], as shown below:

ρ̂g,ĝ = σ̂dEBV ,DGV√
σ 2
g σ̂ 2

DGV

where ρ̂g,ĝ is the accuracy of DGV, σ̂dEBV ,DGV is the covari-
ance between dEBV and DGV from the analysis, σ 2

g is
the additive genetic variance, and σ̂ 2

DGV is the variance
of DGV. Additive genetic variance was obtained from
prior pedigree-based analyses. This calculation of accu-
racy standardizes the covariance between dEBV and DGV
in order to account for heterogeneous variances among
sires [20]. Reliability was obtained by squaring this esti-
mate of accuracy.
A corresponding bivariate BayesA analysis was per-

formed on mastitis and SCS data. Pedigree-based EBV
were obtained as described above, except that a bivari-
ate model was used in this case. We used the partially
modified C code developed by Jia and Jannink [28] to
investigate the performance of two-trait BayesA analyses.
The model implemented was similar to that of single-trait
BayesA analyses described previously. Marker effects in
bivariate BayesA analyses were sampled from a multivari-
ate normal distribution following MVN

(
0,

∑
a
)
and the

variance,
∑

a, was sampled from an inverted Wishart dis-
tribution following inv−Wis(ν, Sn×n), where n equals the
number of traits. Number of degrees of freedom (ν) was
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fixed at 4.012 and scale (Sn×n) was fixed at 0.002 on the
diagonal and 0 otherwise.

Single-step analyses
To perform univariate single-step analyses, preGSf90 (ver-
sion 1.142) was used to create the inverse blended H
matrix [42]. A bivariate single-step analysis was also
performed using HD genotype data. The blended H
matrix was incorporated into a threshold sire model using
THRGIBBS1F90 (version 2.104) [35]. The model fitted
was:

λ = Xβ + Zhh + Zss + e

where λ represents a vector of unobserved liabilities to
mastitis or SCS, β is a vector of fixed effects including
year-season, X is the corresponding incidence matrix of
fixed effects, h represents the random herd-year effect,
where h ∼ N

(
0, Iσ 2

h
)
, with I representing an iden-

tity matrix, s represents the random sire effect where
s ∼ N

(
0,Hσ 2

s
)
with H representing the blended rela-

tionship matrix of pedigree and genomic information, Zh
and Zs represent the corresponding incidence matrices
for random effects, and e represents the random residual,
assumed to be distributed asN(0, I). The residual variance
was fixed at 1 for identifiability. TheA−1

22 matrix was given
a weight of 0.4 using the “TauOmega” option of preGSf90
(version 1.142) [42] to aid in convergence. A chain of
300 000 iterations was completed with 30 000 samples
discarded as burn-in. Every 30 samples were saved to
reduce autocorrelation. Post-Gibbs analysis and conver-
gence assessment were completed on the 9000 samples
with POSTGIBBSF90 (version 3.04) [36]. Posterior means,
standard deviations, and 95% highest posterior densities
were calculated to obtain estimates of variance compo-
nents.
A bivariate analysis was also performed using single-

step methodology for mastitis and SCS. The model
remained comparable to that described above, except that
it was expanded to two dependent variables:

Y = Xβ + Zhh + Zss + e

where Y represents a vector of liabilities to mastitis as well
as phenotypic values of SCS. All other variables were the
same as defined previously. The model was fitted using
THRGIBBS1F90 (version 2.104) [35]. A chain of 500 000
iterations was completed with 50 000 samples discarded as
burn-in. Every 50 samples were saved to reduce autocor-
relation in the full dataset; every 100 samples were saved
to reduce autocorrelation in the training dataset. This
resulted in a total of 9000 samples for the full dataset and
4500 samples for the training dataset. Post-Gibbs analysis
and convergence assessment were completed with POST-
GIBBSF90 (version 3.04) [36]. Posterior means, standard

deviations, and 95% highest posterior densities were cal-
culated as estimates of variance components.
Reliabilities of solutions from single-step analyses were

estimated following Misztal et al. [23]. Reliabilities esti-
mated from previously described pedigree-based analyses
using ACCF90 (version 1.67) [36] were used as reliabilities
calculated without genomic information. Pedigree-based
reliability estimates were converted to effective number of
records for genotyped animals (di) as:

di = α
[
1/

(
1 − relpi

) − 1
]

where α is the ratio of residual variance to genetic vari-
ance calculated from the pedigree-based analysis and relpi
represents reliability of the EBV for individual i from
pedigree-based analysis [23]. The values of di were used
to create the diagonal matrixD. The inverse matrixQ was
calculated as:

Qi = [
D + (

I + G−1 − A−1
22

)
α
]−1

where G−1 is the inverse of the genomic relationship
matrix and A−1

22 is the inverse of the pedigree-based rela-
tionship matrix between genotyped animals only [23].
Genomic reliabilities for each sire were then estimated as:

relgi = 1 − αqii

where relgi represents approximate genomic reliability and
qii is the diagonal element ofQ−1 corresponding to the ith
sire [23].

Model comparison
To perform model comparison, the complete dataset
was divided into two subsets based on year of masti-
tis occurence to represent accumulation of data in the
dairy industry. The training dataset included records
from 1999 through 2008. The validation dataset included
records from 2009 through 2012 and was used to test esti-
mates obtained with the training dataset. This resulted
in an approximate 80%-20% split of the data. Editing
was applied to the datasets to ensure sires had sufficient
daughter records in order to perform fair comparisons.
For sires to be included in the validation dataset, they had
to have at least 30 daughters with records and for sires to
be included in the prediction dataset, they had to have at
least 15 daughters with records.
Predictions were performed to compare models. The

probability for daughters to develop mastitis for each sire
was used to evaluate model predictive ability. Average
incidence of daughters developing mastitis was calculated
for the validation dataset. These were regressed using a
logistic link on EBV calculated from training data using
the logistic procedure of SAS (SAS Institute Inc., Cary,
NC). Coefficients obtained from the logistic regression
model allowed EBV from the training data to be trans-
formed into a probability for daughters to developmastitis
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for each sire. The obtained probability was multiplied by
the number of observations (daughters) for each sire in
the validation dataset to calculate expected number of
daughters with mastitis. Predictive ability of each model
was assessed using a sum of χ2 modified from González-
Recio et al. [24]. The χ2 value was calculated for each
sire between expected “success” (daughters without mas-
titis) and “failures” (daughters with mastitis) from EBV
based on training data and observed number of daughters
with and without mastitis in the validation data, as shown
below:

χ2 = [
(expected success − observed success)

]2
+ (expected failures − observed failures)2

]
.

Expected values are thus based on calculated probabilities.
Observed values were those from the validation dataset.
Calculated χ2 values were summed across sires, resulting
in a single χ2 sum for each model. For model compari-
son, smaller χ2 values are preferred. Among all sires, there
were 35 sires with records in both training and validation
datasets. We recognize that this is a very limited num-
ber of sires; however, the strict editing was put in place to
ensure that equivalent comparisons could be performed.
As previously mentioned, analyses were also performed
without enforcing the strict criteria on number of daugh-
ters. This allowed performance to be compared between
the very confined dataset and a more typical dataset.
Predictive ability of the model was also assessed by

calculating the proportion of wrong predictions (WP),
which was the difference between expected and observed
healthy daughters divided by the total number of daugh-
ters for each sire. Smaller values are preferred for this
metric as well.
Model fit was evaluated using local weighted regression

[43], with EBV estimated from the full dataset and average
incidence per sire in the full dataset. Regression parame-
ters were calculated with PROC LOESS in SAS (SAS Inst.
Inc., Cary, NC). The optimum smoothing parameter was
selected based on a corrected Akaike’s information crite-
rion (AICC) [44]. This smoothing parameter determines
the number of datapoints within each local neighborhood
that affects the complexity of model fit.

Results and discussion
Posteriormeans of variance components for full and train-
ing datasets for both DATAfull and DATAdtr are in Table 2
from univariate pedigree-based analyses of mastitis and
SCS. Comparisons between DATAfull and DATAdtr pro-
vided very similar estimates of variance components. Her-
itability of liability to mastitis was greater in DATAfull
in most cases. Heritability estimates calculated as the
mean of posterior distributions were 0.05 (SD = 0.02)

in both full and training datasets for liability to masti-
tis in DATAdtr . Highest posterior density 95% intervals
for heritability of liability to mastitis using DATAdtr were
(0.02, 0.08) for both full and training datasets. Heritability
estimates of SCS from DATAdtr , calculated as the mean of
resulting posterior distributions, were 0.08 (SD = 0.01)
for both full and training datasets. Posterior means of
variance components for full and training datasets from
single-step analyses are also in Table 2. Heritability esti-
mates from single-step analyses for liability to mastitis
were equal to 0.11 (SD = 0.03) and 0.06 (SD = 0.02)
for the full and training datasets of DATAdtr , respectively.
Heritability estimates from univariate single-step analyses
of SCS were equal to 0.18 (SD = 0.03) for both full and
training datasets ofDATAdtr , respectively. This was higher
than the heritability of SCS estimated with DATAfull.
Highest posterior density 95% intervals for heritability of
liability to mastitis were (0.05, 0.18) and (0.02, 0.10) for
full and training DATAdtr , respectively. Highest posterior
density 95% intervals for heritability of SCS were (0.13,
0.24) for both full and training DATAdtr . Posterior means
of residual and genetic variance were used to calculate the
proportion of variance accounted for by markers in uni-
variate BayesA analyses ofmastitis andwere equal to 0.156
and 0.121 for the full and training datasets of DATAdtr ,
respectively. In general, variance component estimates
from each dataset and analysis method were very similar.
Heritability estimates calculated withDATAdtr were lower
than those calculated previously with a larger dataset [19];
however, they were still within the range of reported val-
ues [45,46]. Heritability estimates of SCS were also similar
to other reports found in the literature [47-49].
Table 3 includes posterior means of variance compo-

nents for bivariate analyses of full and training data from
both DATAfull and DATAdtr . Similar to univariate anal-
yses, variance components between each dataset were
very similar. Pedigree-based and single-step analyses are
included. Heritability estimates calculated for mastitis in
pedigree-based analyses were similar to those with uni-
variate models. The highest posterior density 95% inter-
vals from pedigree-based analysis of liability to mastitis
were (0.01, 0.06) for both full and training DATAdtr . Pos-
terior mean heritability of liability to mastitis was higher
in the single-step than the pedigree-based analyses, equal
to 0.08 (SD = 0.03) for both full and training DATAdtr .
Highest posterior density 95% intervals for heritability of
liability tomastitis were (0.03, 0.14) and (0.03, 0.13) for full
and training DATAdtr , respectively. Posterior mean heri-
tability for SCS was 0.09 (SD = 0.02) and 0.10 (SD = 0.02)
in pedigree-based analyses using full or training DATAdtr ,
respectively. Posterior mean heritability of SCS was also
higher in single-step analyses, as shown in Table 4. The
higher heritability estimates obtained in the single-step
analyses may be a result of bias introduced in tuning the
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Table 2 Single-trait model variance component estimates (standard deviation)

Mastitis

Data without daughter restrictions Data with daughter restrictions

Pedigree-based analysis Single-step analysis Pedigree-based analysis Single-step analysis

Full data Training data Full data Training data Full data Training data Full data Training data

σ 2
s 0.02 (0.004) 0.03 (0.004) 0.04 (0.006) 0.05 (0.007) 0.02 (0.006) 0.02 (0.006) 0.04 (0.01) 0.02 (0.008)

σ 2
h 0.49 (0.03) 0.46 (0.03) 0.49 (0.02) 0.46 (0.03) 0.43 (0.03) 0.41 (0.04) 0.43 (0.03) 0.41 (0.04)

σ 2
e 1.0 (0.006) 1.0 (0.007) 1.0 (0.006) 1.0 (0.007) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01)

h2 0.10 (0.01) 0.12 (0.01) 0.10 (0.02) 0.12 (0.02) 0.05 (0.02) 0.05 (0.02) 0.11 (0.03) 0.06 (0.02)

Somatic Cell Score

Pedigree-based analysis Single-step analysis Pedigree-based analysis Single-step analysis

Full data Training data Full data Training data Full data Training data Full data Training data

σ 2
s 0.04 (0.004) 0.04 (0.004) 0.07 (0.006) 0.07 (0.006) 0.05 (0.008) 0.05 (0.008) 0.10 (0.02) 0.10 (0.02)

σ 2
h 0.53 (0.02) 0.53 (0.02) 0.53 (0.02) 0.52 (0.02) 0.52 (0.02) 0.50 (0.03) 0.52 (0.02) 0.50 (0.03)

σ 2
e 1.64 (0.008) 1.64 (0.008) 1.63 (0.008) 1.60 (0.008) 1.62 (0.01) 1.62 (0.02) 1.62 (0.01) 1.62 (0.02)

h2 0.08 (0.01) 0.08 (0.01) 0.13 (0.01) 0.13 (0.01) 0.08 (0.01) 0.08 (0.01) 0.18 (0.03) 0.18 (0.03)

Estimated variance components include sire variance (σ 2
s ), herdyear variance (σ

2
h ), residual variance (σ

2
e ) and heritability (h2) for full and training datasets from pedigree-based and single-step analyses of mastitis and somatic

cell score.
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Table 3 Bivariate model genetic variance component estimates (standard deviation)

Mastitis

Data without daughter restrictions Data with daughter restrictions

Pedigree-based analysis Single-step analysis Pedigree-based analysis Single-step analysis

Full data Training data Full data Training data Full data Training data Full data Training data

σ 2
s 0.02 (0.003) 0.02 (0.004) 0.03 (0.01) 0.04 (0.01) 0.01 (0.005) 0.01 (0.005) 0.03 (0.01) 0.03 (0.01)

σ 2
h 0.49 (0.02) 0.46 (0.03) 0.43 (0.03) 0.46 (0.03) 0.43 (0.03) 0.41 (0.04) 0.43 (0.03) 0.41 (0.04)

σ 2
e 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01) 1.0 (0.01)

h2 0.05 (0.01) 0.06 (0.01) 0.09 (0.02) 0.10 (0.02) 0.04 (0.01) 0.05 (0.01) 0.08 (0.03) 0.08 (0.03)

Somatic Cell Score

Pedigree-based analysis Single-step analysis Pedigree-based analysis Single-step analysis

Full data Training data Full data Training data Full data Training data Full data Training data

σ 2
s 0.04 (0.004) 0.05 (0.004) 0.11(0.02) 0.07 (0.01) 0.05 (0.01) 0.05 (0.009) 0.11(0.02) 0.11 (0.02)

σ 2
h 0.34 (0.01) 0.33 (0.01) 0.34 (0.02) 0.33 (0.01) 0.34 (0.02) 0.33 (0.02) 0.34 (0.02) 0.33 (0.02)

σ 2
e 1.67 (0.01) 1.63 (0.009) 1.66 (0.02) 1.63 (0.01) 1.66 (0.02) 1.65 (0.02) 1.66 (0.02) 1.65 (0.02)

h2 0.09 (0.01) 0.09 (0.009) 0.14 (0.01) 0.14 (0.01) 0.09 (0.02) 0.10 (0.02) 0.20 (0.03) 0.20 (0.03)

Estimated variance components include sire variance (σ 2
s ), herdyear variance (σ

2
h ), residual variance (σ

2
e ) and heritability (h2) for full and training datasets from pedigree-based and single-step analyses of mastitis and somatic

cell score.
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Table 4 Cross-validation summary statistics for each
single-trait model for mastitis

Data without daughter restrictions

AICC
∑

χ2 WP

Pedigree-based -2.20 963462 0.109

BayesA -2.13 966992 0.110

Single-step -2.18 963280 0.111

Data with daughter restrictions

AICC
∑

χ2 WP

Pedigree-based -5.05 1846303 0.017

BayesA (non-weighted) -4.82 1934351 0.009

BayesA (weighted) -4.73 1839123 0.019

Single-step -5.03 1787162 0.033

Corrected AIC (AICC) estimated via local weighted regression of average mastitis
incidence per sire on EBV of sire for each model fit with the full dataset. Sum of
χ2 (

∑
χ2) is a measure of predictive ability, with smaller values being preferred.

Median proportion of wrong predictions represented by WP.

H matrix by weighting G and A22 to aid in convergence.
Proportions of total variance accounted for by markers
in bivariate BayesA analyses of mastitis with SCS were
equal to 0.134 and 0.118 for the full and trainingDATAdtr ,
respectively.
Bivariate analyses allowed estimation of correlations

between traits. Genetic correlations between liability to
mastitis and SCS were 0.63 (SD = 0.17) in the pedigree-
based analyses using full DATAdtr and 0.77 (SD = 0.19)
using training DATAdtr . Genetic correlations between lia-
bility to mastitis and SCS were very similar in the single-
step analysis at 0.67 (SD = 0.16) for the full DATAdtr and
0.71 (SD = 0.16) in the training DATAdtr . Correlation

estimates were similar to a previously reported estimate
of 0.62 (SD = 0.03) [50]. Bivariate analyses were also
performed using the HD genotype data. All estimates
of variance components were similar to those obtained
with the 50K genotype data. Because similar results
were obtained, further analyses used 50K genotype data
only.
Changes in reliability from pedigree-based models to

single-step models were investigated for all sires included
in DATAdtr . Reliabilities for univariate pedigree-based
analysis of mastitis ranged from 0.01 up to 0.90. Aver-
age reliability for these sires was equal to 0.16. Relia-
bilities for bivariate pedigree-based analysis of mastitis
and SCS ranged from 0.16 to 0.90, with average reliabil-
ity equal to 0.54 for mastitis. This increase in reliability
was expected from the incorporation of SCS as a corre-
lated trait with higher heritability. The largest increase in
reliability occurred with incorporation of genomic data.
Approximated mean reliabilities of mastitis were equal
to 0.68 and 0.80 in univariate and bivariate single-step
analyses, respectively. A similar increase was observed for
SCS, as shown in Figure 1. Changes in reliability were
also explored using HD genotype data and are in Figure 2.
Average reliability of mastitis was equal to 0.81 in bivariate
single-step analyses (Figure 2).
Although not comparable to the other analyses, a mea-

sure of reliability was also estimated for BayesA analyses.
Reliabilities of mastitis in the univariate BayesA analy-
sis were equal to 0.22 in DATAdtr and 0.23 in DATAfull.
In the bivariate BayesA analysis, reliability increased to
0.37. It must be acknowledged, however, that the above
reliability values were calculated without incorporation
of additional data sources, such as parental average or

Figure 1 Reliability of sire EBV. Reliabilities obtained from pedigree-based and single-step univariate and bivariate analyses of mastitis (MAST) and
somatic cell score (SCS).
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Figure 2 Reliability of sire EBV obtained with HD genotypes. Reliabilities obtained from pedigree-based and single-step bivariate analyses of
mastitis (MAST) and somatic cell score (SCS) using HD genotypes.

progeny data. It is expected that reliability will improve
upon “blending” DGV to obtain genomic EBV (GEBV).
Bivariate BayesA analysis also allowed us to calculate the
correlation between marker effects for MAST and SCS.
Genetic correlation between the two traits was equal to
0.22, which is lower than expected, however, may result
from the highly polygenic nature of complex traits. It has
been noted that multiple-trait models were better able
to capture genetic correlation between traits when major
QTL were present, as compared to traits with a more
polygenic architecture [28].

Model comparison
Predictive ability
Predictive ability of each model was assessed by the sum
of χ2 values and the proportion of wrong predictions for
mastitis incidence, where smaller values indicate better
predictive ability. Values for each model are in Table 4,
with DATAfull in the top portion and DATAdtr in the bot-
tom portion of the table. Prediction of mastitis incidence
was estimated for 35 sires having at least 30 daughter
records in the training data and at least 15 daughter
records in the validation data. Each model’s χ2 value is in
Table 4. The sum of χ2 values was smallest with the single-
step analysis, which thus has the best predictive ability,
followed by pedigree analysis and BayesA analysis, respec-
tively. This was also observed for DATAfull. BayesA analy-
sis without weighting sire EBV had the poorest predictive

ability. Thus, it was not included in further analyses. All
models had very small values for median proportion of
wrong predictions, ranging from 0.009 to 0.033.

Model fit
Goodness of fit for each model was evaluated by fitting
a local weighted regression (LOESS) model between EBV
obtained from the full dataset and mean incidence calcu-
lated for each sire in the full dataset. The best smoothing
parameter was selected using a corrected AIC criteria
(AICC) [44]. Smaller values of AICC are preferred, which
were found for single-step and pedigree-based models, as
shown in Table 4. Table 5 includes cross-validation sum-
mary statistics for each bivariate model. Again, the single-
stepmodel had the best model fit with genomic data, since
it had the smallest AICC value. However, it also had the
largest χ2 value. Correspondingly, the bivariate BayesA
model had the smallest proportion of wrong predic-
tions. In general, all single-trait models had comparable
fits.
When selecting a genomic evaluation method, there are

many aspects to consider. Lowly heritable traits will need
a larger number of records to reach reliabilities equiva-
lent to those found for more highly heritable traits [51].
We acknowledge that the strict editing parameters used
here do not reflect the true structure of the data. This was
performed, however, in an effort to obtain a very clean
dataset that would allow prediction with as little bias as
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Table 5 Cross-validation summary statistics for each
bivariate model for mastitis and somatic cell score

AICC
∑

χ2 WP

Pedigree-based -4.77 1795125 0.02

Single-step -4.76 1803782 0.02

Bivariate BayesA -4.55 1947319 0.008

Corrected AIC (AICC) estimated via local weighted regression of average mastitis
incidence per sire on EBV of sire for each model fit with the full dataset. Sum of
χ2 (

∑
χ2) is a measure of predictive ability, with smaller values being preferred.

Median proportion of wrong predictions represented by WP.

possible. Completion of analyses with data without strict
editing confirmed that results were comparable. This also
provides an example of genomic prediction for traits with
a limited number of available records. As more records
are collected, it is also important that they remain con-
sistent [52]. Consistent recording of health data is more
difficult than other traits due to subjectivity of diagno-
sis and reporting. The size of the training populations
used to estimate genetic effects in two stage methods will
also increase as more data are collected. Accumulation
of more health records over time, as well as additional
genotypes, is expected to improve genomic prediction
regardless of the method used. This will allow more rapid
genetic improvement for lowly heritable, yet economically
important traits.
Irrespective of the type of data, all genomic method-

ologies have benefits and disadvantages that must be
considered prior to implementation. Bayesian approaches
can incorporate prior knowledge about marker variances
in the analysis [7], as well as determine which markers can
be removed to decrease excess noise. Multi-step methods
follow similar procedures to those already implemented
for genetic evaluations and only minor modifications are
needed to predict genomic values for young genotyped
animals [13]. They also tend to be more computation-
ally tractable as datasets grow larger [27], but require
multiple steps to be performed prior to incorporation of
genomic data. Deregression may need to be performed
initially, which may produce spurious results, especially
for lowly heritable traits and for individuals with low reli-
ability estimates [12,14]. Resulting DGV from multi-stage
analyses need to be blended with additional data if GEBV
are desired.
One of the advantages of the single-step methodol-

ogy, aside from only requiring one step, is that tradi-
tional BLUP methodology can be used by modifying
only the relationship matrix. This makes the single-
step method easy to implement for complex data and
models such as multivariate, threshold, and random
regression models [16]. A disadvantage of the single-step
method is that it can be more computationally expen-
sive due to having to form the H−1 matrix, although

other methods have been developed to more efficiently
compute this matrix [16]. Reliabilities of prediction also
have to be approximated because direct matrix inver-
sion is not feasible for large datasets. This will become
especially important as the number of genotyped animals
increases [23].
A straight-forward approach to extend multi-stage

methods to multivariate models is lacking and requires
further research. Performance of multivariate models will
depend on the genetic architecture of traits and this must
be considered [28]. Currently, the single-step method can
be more readily applied to multiple traits, especially for
traits with low heritability and reliability.

Conclusions
Genomic data improves our ability to predict animal
breeding values. The performance of specific genomic
methods when implemented with real data will depend
on many factors. Heritability of traits and reliability of
genotyped individuals will have an impact on effective-
ness of genomic evaluation methods. In this study, the
differences between methodologies are probably due to
many factors, including low heritability, use of a threshold
sire model, and small training population size. Single-step
models had the best predictive ability; BayesA models had
the smallest proportion of wrong predictions. Given the
current characteristics of producer-recorded health data,
the single-step method provided several advantages com-
pared to two-stage methods. As more health records are
collected, the two methods are expected to perform more
similarly.
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