67 research outputs found
The Mitogenome Relationships and Phylogeography of Barn Swallows (Hirundo rustica)
The barn swallow (Hirundo rustica) poses a number of fascinating scientific questions, including the taxonomic status of postulated subspecies. Here, we obtained and assessed the sequence variation of 411 complete mitogenomes, mainly from the European H. r. rustica, but other subspecies as well. In almost every case, we observed subspecies-specific haplogroups, which we employed together with estimated radiation times to postulate a model for the geographical and temporal worldwide spread of the species. The female barn swallow carrying the Hirundo rustica ancestral mitogenome left Africa (or its vicinity) around 280 thousand years ago (kya), and her descendants expanded first into Eurasia and then, at least 51kya, into the Americas, from where a relatively recent (<20kya) back migration to Asia took place. The exception to the haplogroup subspecies specificity is represented by the sedentary Levantine H. r.Transitiva that extensively shares haplogroup A with the migratory European H. r. rustica and, to a lesser extent, haplogroup B with the Egyptian H. r. savignii. Our data indicate that rustica and transitiva most likely derive from a sedentary Levantine population source that split at the end of the Younger Dryas (YD) (11.7kya). Since then, however, transitiva received genetic inputs from and admixed with both the closely related rustica and the adjacent savignii. Demographic analyses confirm this species' strong link with climate fluctuations and human activities making it an excellent indicator for monitoring and assessing the impact of current global changes on wildlife
The role of conservative versus innovative nesting behavior on 25-year population expansion of an avian predator
Species ranges often change in relation to multiple environmental and demographic
factors. Innovative behaviors may affect these changes by facilitating the use of novel
habitats, although this idea has been little explored. Here, we investigate the importance
of behavior during range change, using a 25-year
population expansion of
Bonelli’s eagle in southern Portugal. This unique population is almost exclusively tree
nesting, while all other populations in western Europe are predominantly cliff nesting.
During 1991–2014, we surveyed nest sites and estimated the year when each breeding
territory was established. We approximated the boundaries of 84 territories using
Dirichlet tessellation and mapped topography, land cover, and the density of human
infrastructures in buffers (250, 500, and 1,000 m) around nest and random sites. We
then compared environmental conditions at matching nest and random sites within
territories using conditional logistic regression, and used quantile regression to estimate
trends in nesting habitats in relation to the year of territory establishment. Most
nests (>85%, n = 197) were in eucalypts, maritime pines, and cork oaks. Nest sites
were farther from the nests of neighboring territories than random points, and they
were in areas with higher terrain roughness, lower cover by agricultural and built-up
areas, and lower road and powerline densities. Nesting habitat selection varied little
with year of territory establishment, although nesting in eucalypts increased, while
cliff nesting and cork oak nesting, and terrain roughness declined. Our results suggest
that the observed expansion of Bonelli’s eagles was facilitated by the tree nesting
behavior, which allowed the colonization of areas without cliffs. However, all but a
very few breeding pairs settled in habitats comparable to those of the initial population
nucleus, suggesting that after an initial trigger possibly facilitated by tree nesting,
the habitat selection remained largely conservative. Overall, our study supports recent
calls to incorporate information on behavior for understanding and predicting species
range shiftsinfo:eu-repo/semantics/publishedVersio
Lifetime fitness consequences of early-life ecological hardship in a wild mammal population
1. Early-life ecological conditions have major effects on survival and reproduction. Numerous studies in wild systems show fitness benefits of good quality early-life ecological conditions (‘silver spoon’ effects). 2. Recently, however, some studies have reported that poor quality early-life ecological conditions are associated with later-life fitness advantages and that the effect of early-life conditions can be sex-specific. Furthermore, few studies have investigated the effect of the variability of early-life ecological conditions on later-life fitness. 3. Here we test how the mean and variability of early-life ecological conditions affect the longevity and reproduction of males and females using 14 years of data on wild banded mongooses (Mungos mungo). 4. Males that experienced highly variable ecological conditions during development lived longer and had greater lifetime fitness, while those that experienced poor early-life conditions lived longer but at a cost of reduced fertility. In females there were no such effects. 5. Our study suggests that exposure to more variable environments in early life can result in lifetime fitness benefits whereas differences in the mean early-life conditions experienced mediates a life history trade-off between survival and reproduction. It also demonstrates how early-life ecological conditions can produce different selection pressures on males and female
Crosstalk between Virulence Loci: Regulation of Salmonella enterica Pathogenicity Island 1 (SPI-1) by Products of the std Fimbrial Operon
Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam− background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam+ background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam− mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed
Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales
Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions
BACKGROUND: Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules. PRINCIPAL FINDINGS: Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested. CONCLUSIONS: These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium
Recommended from our members
Adaptive responses of animals to climate change are most likely insufficient
Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s)
Breeding Experience and the Heritability of Female Mate Choice in Collared Flycatchers
Heritability in mate preferences is assumed by models of sexual selection, and preference evolution may contribute to adaptation to changing environments. However, mate preference is difficult to measure in natural populations as detailed data on mate availability and mate sampling are usually missing. Often the only available information is the ornamentation of the actual mate. The single long-term quantitative genetic study of a wild population found low heritability in female mate ornamentation in Swedish collared flycatchers. One potentially important cause of low heritability in mate ornamentation at the population level is reduced mate preference expression among inexperienced individuals.Applying animal model analyses to 21 years of data from a Hungarian collared flycatcher population, we found that additive genetic variance was 50 percent and significant for ornament expression in males, but less than 5 percent and non-significant for mate ornamentation treated as a female trait. Female breeding experience predicted breeding date and clutch size, but mate ornamentation and its variance components were unrelated to experience. Although we detected significant area and year effects on mate ornamentation, more than 85 percent of variance in this trait remained unexplained. Moreover, the effects of area and year on mate ornamentation were also highly positively correlated between inexperienced and experienced females, thereby acting to remove difference between the two groups.The low heritability of mate ornamentation was apparently not explained by the presence of inexperienced individuals. Our results further indicate that the expression of mate ornamentation is dominated by temporal and spatial constraints and unmeasured background factors. Future studies should reduce unexplained variance or use alternative measures of mate preference. The heritability of mate preference in the wild remains a principal but unresolved question in evolutionary ecology
- …