6,828 research outputs found

    The Polish topology of the isometry group of the infinite dimensional hyperbolic space

    Full text link
    We consider the isometry group of the infinite dimensional separable hyperbolic space with its Polish topology. This topology is given by the pointwise convergence. For non-locally compact Polish groups, some striking phenomena like automatic continuity or extreme amenability may happen. Our leading idea is to compare this topological group with usual Lie groups on one side and with non-Archimedean infinite dimensional groups like S∞\mathcal{S}_\infty, the group of all permutations of a countable set on the other side. Our main results are Automatic continuity (any homomorphism to a separable group is continuous), minimality of the Polish topology, identification of its universal Furstenberg boundary as the closed unit ball of a separable Hilbert space with its weak topology, identification of its universal minimal flow as the completion of some suspension of the action of the additive group of the reals on its universal minimal flow. All along the text, we lead a parallel study with the sibling group of isometries of a separable Hilbert space.Comment: After a first version of this paper, Todor Tsankov asked if the topology is minimal. A positive answer has been added to this second versio

    Topological properties of Wazewski dendrite groups

    Full text link
    Homeomorphism groups of generalized Wa\.zewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Wa\.zewski dendrite D∞D_\infty is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group G∞G_\infty, we show some of its topological properties like existence of a comeager conjugacy class, the Steinhaus property, automatic continuity and the small index subgroup property. Moreover, we identify the universal minimal flow of G∞G_\infty. This allows us to prove that point-stabilizers in G∞G_\infty are amenable and to describe the universal Furstenberg boundary of G∞G_\infty.Comment: Slight modifications about the expositio

    Superrigidity In Infinite Dimension And Finite Rank Via Harmonic Maps

    Full text link
    We prove geometric superrigidity for actions of cocompact lattices in semisimple Lie groups of higher rank on infinite dimensional Riemannian manifolds of nonpositive curvature and finite telescopic dimension

    Walks of bubbles on a hot wire in a liquid bath

    Full text link
    When a horizontal resistive wire is heated up to the boiling point in a subcooled liquid bath, some vapor bubbles nucleate on its surface. Traditional nucleate boiling theory predicts that bubbles generated from active nucleate sites, grow up and depart from the heating surface due to buoyancy and inertia. However, we observed here a different behavior: the bubbles slide along the heated wire. In this situation, unexpected regimes are observed; from the simple sliding motion to bubble clustering. We noticed that bubbles could rapidly change their moving direction and may also interact. Finally, we propose an interpretation for both the attraction between the bubbles and the wire and for the motion of the bubbles on the wire in term of Marangoni effects

    Symmetry classes of alternating sign matrices in the nineteen-vertex model

    Full text link
    The nineteen-vertex model on a periodic lattice with an anti-diagonal twist is investigated. Its inhomogeneous transfer matrix is shown to have a simple eigenvalue, with the corresponding eigenstate displaying intriguing combinatorial features. Similar results were previously found for the same model with a diagonal twist. The eigenstate for the anti-diagonal twist is explicitly constructed using the quantum separation of variables technique. A number of sum rules and special components are computed and expressed in terms of Kuperberg's determinants for partition functions of the inhomogeneous six-vertex model. The computations of some components of the special eigenstate for the diagonal twist are also presented. In the homogeneous limit, the special eigenstates become eigenvectors of the Hamiltonians of the integrable spin-one XXZ chain with twisted boundary conditions. Their sum rules and special components for both twists are expressed in terms of generating functions arising in the weighted enumeration of various symmetry classes of alternating sign matrices (ASMs). These include half-turn symmetric ASMs, quarter-turn symmetric ASMs, vertically symmetric ASMs, vertically and horizontally perverse ASMs and double U-turn ASMs. As side results, new determinant and pfaffian formulas for the weighted enumeration of various symmetry classes of alternating sign matrices are obtained.Comment: 61 pages, 13 figure

    Fusion hierarchies, TT-systems and YY-systems for the dilute A2(2)A_2^{(2)} loop models

    Full text link
    The fusion hierarchy, TT-system and YY-system of functional equations are the key to integrability for 2d lattice models. We derive these equations for the generic dilute A2(2)A_2^{(2)} loop models. The fused transfer matrices are associated with nodes of the infinite dominant integral weight lattice of sℓ(3)s\ell(3). For generic values of the crossing parameter λ\lambda, the TT- and YY-systems do not truncate. For the case λπ=(2p′−p)4p′\frac{\lambda}{\pi}=\frac{(2p'-p)}{4p'} rational so that x=eiλx=\mathrm{e}^{\mathrm{i}\lambda} is a root of unity, we find explicit closure relations and derive closed finite TT- and YY-systems. The TBA diagrams of the YY-systems and associated Thermodynamic Bethe Ansatz (TBA) integral equations are not of simple Dynkin type. They involve p′+2p'+2 nodes if pp is even and 2p′+22p'+2 nodes if pp is odd and are related to the TBA diagrams of A2(1)A_2^{(1)} models at roots of unity by a Z2{\Bbb Z}_2 folding which originates from the addition of crossing symmetry. In an appropriate regime, the known central charges are c=1−6(p−p′)2pp′c=1-\frac{6(p-p')^2}{pp'}. Prototypical examples of the A2(2)A_2^{(2)} loop models, at roots of unity, include critical dense polymers DLM(1,2){\cal DLM}(1,2) with central charge c=−2c=-2, λ=3π8\lambda=\frac{3\pi}{8} and loop fugacity β=0\beta=0 and critical site percolation on the triangular lattice DLM(2,3){\cal DLM}(2,3) with c=0c=0, λ=π3\lambda=\frac{\pi}{3} and β=1\beta=1. Solving the TBA equations for the conformal data will determine whether these models lie in the same universality classes as their A1(1)A_1^{(1)} counterparts. More specifically, it will confirm the extent to which bond and site percolation lie in the same universality class as logarithmic conformal field theories.Comment: 34 page

    Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection

    Get PDF
    The properties of a standard hydraulic jump depend critically on a Froude number Fr defined as the ratio of the flow velocity to the gravity waves speed. In the case of a horizontal circular jump, the question of the Froude number is not well documented. Our experiments show that Fr measured just after the jump is locked on a constant value that does not depend on flow rate Q, kinematic viscosity {\nu} and surface tension {\gamma}. Combining this result to a lubrication description of the outer flow yields, under appropriate conditions, a new and simple law ruling the jump radius RJ : RJ(ln(R∞RJ))3/8∼Q5/8ν−3/8R_J (ln (\frac{R_\infty}{R_J}))^{3/8} \sim Q^{5/8}\nu ^{-3/8}, in excellent agreement with our experimental data. This unexpected RJ result asks an unsolved question to all available models.Comment: 5 pages, 3 figure
    • …
    corecore