138 research outputs found

    SNP analysis reveals an evolutionary acceleration of the human-specific microRNAs

    Get PDF
    MicroRNAs are one class of important gene regulators at the post-transcriptional level by binding to the 3’UTRs of target mRNAs. It has been reported that human microRNAs are evolutionary conserved and show lower single nucleotide polymorphisms (SNPs) than their flanking regions. However, in this study, we report that the human-specific microRNAs show a higher SNP density than both the conserved microRNAs and other control regions, suggesting rapid evolution and positive selection has occurred in these regions. Furthermore, we observe that the human-specific microRNAs show greater SNPs minor allele frequency and the SNPs in the human-specific microRNAs show fewer effects on the stability of the microRNA secondary structure, indicating that the SNPs in the human-specific microRNAs tend to be less deleterious. Finally, two microRNAs hsa-mir-423 (SNP: rs6505162), hsa-mir-608 (SNP: rs4919510) and 288 target genes that have apparently been under recent positive selection are identified. These findings will improve our understanding of the functions, evolution, and population disease susceptibility of human microRNAs

    An Analysis of Human MicroRNA and Disease Associations

    Get PDF
    It has been reported that increasingly microRNAs are associated with diseases. However, the patterns among the microRNA-disease associations remain largely unclear. In this study, in order to dissect the patterns of microRNA-disease associations, we performed a comprehensive analysis to the human microRNA-disease association data, which is manually collected from publications. We built a human microRNA associated disease network. Interestingly, microRNAs tend to show similar or different dysfunctional evidences for the similar or different disease clusters, respectively. A negative correlation between the tissue-specificity of a microRNA and the number of diseases it associated was uncovered. Furthermore, we observed an association between microRNA conservation and disease. Finally, we uncovered that microRNAs associated with the same disease tend to emerge as predefined microRNA groups. These findings can not only provide help in understanding the associations between microRNAs and human diseases but also suggest a new way to identify novel disease-associated microRNAs

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore