29 research outputs found

    Correcting errors from spatial upscaling of nonlinear greenhouse gas flux models

    Get PDF
    Ecological models are used to quantify processes over large regions. When the model is nonlinear and input variables are spatially averaged, the regional mean will be in error. A formula for estimating the upscaling error can be derived from Taylor expansion of the model (Bresler and Dagan 1988). We test this for simple models under three different input distributions (Gaussian, exponential, lognormal). In several cases the formula is exact, in others it provides a reasonable approximation. We then study models for emissions of methane, ammonia, and nitrous oxide across the UK. We scale from 1 × 1 km to 32 × 32 km. The UK-average upscaling errors are −12%, −48% and −3%, well estimated using the formula. The formula is a useful tool for modellers desiring to correct upscaling error for their application. Calculation of second-order partial derivatives of model output is required, for which we provide R-code

    A pilot single-blind multicentre randomized controlled trial to evaluate the potential benefits of computer-assisted arm rehabilitation gaming technology on the arm function of children with spastic cerebral palsy

    Get PDF
    OBJECTIVE: To evaluate the potential benefits of computer-assisted arm rehabilitation gaming technology on arm function of children with spastic cerebral palsy. DESIGN: A single-blind randomized controlled trial design. Power calculations indicated that 58 children would be required to demonstrate a clinically important difference. SETTING: Intervention was home-based; recruitment took place in regional spasticity clinics. PARTICIPANTS: A total of 15 children with cerebral palsy aged five to 12 years were recruited; eight to the device group. INTERVENTIONS: Both study groups received 'usual follow-up treatment' following spasticity treatment with botulinum toxin; the intervention group also received a rehabilitation gaming device. MAIN MEASURES: ABILHAND-kids and Canadian Occupational Performance Measure were performed by blinded assessors at baseline, six and 12 weeks. RESULTS: An analysis of covariance showed no group differences in mean ABILHAND-kids scores between time points. A non-parametric analysis of variance on Canadian Occupational Performance Measure scores showed a statistically significant improvement across time points (χ(2) (2,15) = 6.778, p = 0.031), but this improvement did not reach minimal clinically important difference. Mean daily device use was seven minutes. Recruitment did not reach target owing to unanticipated staff shortages in clinical services. Feedback from children and their families indicated that the games were not sufficiently engaging to promote sufficient use that was likely to result in functional benefits. CONCLUSION: This study suggests that computer-assisted arm rehabilitation gaming does not benefit arm function, but a Type II error cannot be ruled out

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    HEART rate variability biofeedback for LOng Covid symptoms (HEARTLOC): protocol for a feasibility study

    No full text
    INTRODUCTION: Long COVID (LC), also known as post-COVID-19 syndrome, refers to symptoms persisting 12 weeks after COVID-19 infection. It affects up to one in seven people contracting the illness and causes a wide range of symptoms, including fatigue, breathlessness, palpitations, dizziness, pain and brain fog. Many of these symptoms can be linked to dysautonomia or dysregulation of the autonomic nervous system after SARS-CoV2 infection. This study aims to test the feasibility and estimate the efficacy, of the heart rate variability biofeedback (HRV-B) technique via a standardised slow diaphragmatic breathing programme in individuals with LC. METHODS AND ANALYSIS: 30 adult LC patients with symptoms of palpitations or dizziness and an abnormal NASA Lean Test will be selected from a specialist Long COVID rehabilitation service. They will undergo a 4-week HRV-B intervention using a Polar chest strap device linked to the Elite HRV phone application while undertaking the breathing exercise technique for two 10 min periods everyday for at least 5 days a week. Quantitative data will be gathered during the study period using: HRV data from the chest strap and wrist-worn Fitbit, the modified COVID-19 Yorkshire Rehabilitation Scale, Composite Autonomic Symptom Score, WHO Disability Assessment Schedule and EQ-5D-5L health-related quality of life measures. Qualitative feedback on user experience and feasibility of using the technology in a home setting will also be gathered. Standard statistical tests for correlation and significant difference will be used to analyse the quantitate data. ETHICS AND DISSEMINATION: The study has received ethical approval from Health Research Authority (HRA) Leicester South Research Ethics Committee (21/EM/0271). Dissemination plans include academic and lay publications. TRIAL REGISTRATION NUMBER: NCT05228665

    LOng COvid Multidisciplinary consortium Optimising Treatments and servIces acrOss the NHS (LOCOMOTION): protocol for a mixed-methods study in the UK

    Get PDF
    Introduction: Long COVID, a new condition whose origins and natural history are not yet fully established, currently affects 1.5 million people in the UK. Most do not have access to specialist long COVID services. We seek to optimise long COVID care both within and outside specialist clinics, including improving access, reducing inequalities, helping self-management and providing guidance and decision support for primary care. We aim to establish a ‘gold standard’ of care by systematically analysing current practices, iteratively improving pathways and systems of care. Methods and analysis: This mixed-methods, multisite study is informed by the principles of applied health services research, quality improvement, co-design, outcome measurement and learning health systems. It was developed in close partnership with patients (whose stated priorities are prompt clinical assessment; evidence-based advice and treatment and help with returning to work and other roles) and with front-line clinicians. Workstreams and tasks to optimise assessment, treatment and monitoring are based in three contrasting settings: workstream 1 (qualitative research, up to 100 participants), specialist management in 10 long COVID clinics across the UK, via a quality improvement collaborative, experience-based co-design and targeted efforts to reduce inequalities of access, return to work and peer support; workstream 2 (quantitative research, up to 5000 participants), patient self-management at home, technology-supported monitoring and validation of condition-specific outcome measures and workstream 3 (quantitative research, up to 5000 participants), generalist management in primary care, harnessing electronic record data to study population phenotypes and develop evidence-based decision support, referral pathways and analysis of costs. Study governance includes an active patient advisory group. Ethics and dissemination: LOng COvid Multidisciplinary consortium Optimising Treatments and servIces acrOss the NHS study is sponsored by the University of Leeds and approved by Yorkshire & The Humber—Bradford Leeds Research Ethics Committee (ref: 21/YH/0276). Participants will provide informed consent. Dissemination plans include academic and lay publications, and partnerships with national and regional policymakers. Trial registration number: NCT05057260, ISRCTN15022307

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe
    corecore