45 research outputs found

    Demographic and clinical profile of idiopathic pulmonary fibrosis patients in Spain: the SEPAR National Registry

    Get PDF
    BackgroundLittle is known on the characteristics of patients diagnosed with idiopathic pulmonary fibrosis (IPF) in Spain. We aimed to characterize the demographic and clinical profile of IPF patients included in the IPF National Registry of the Spanish Respiratory Society (SEPAR).MethodsThis is a prospective, observational, multicentre and nationwide study that involved 608 IPF patients included in the SEPAR IPF Registry up to June 27th, 2017, and who received any treatment for their disease. IPF patients were predominantly males, ex-smokers, and aged in their 70s, similar to other registries.ResultsUpon inclusion, meanSD predicted forced vital capacity was 77.6%+/- 19.4, diffusing capacity for carbon monoxide was 48.5%+/- 17.7, and the 6-min walk distance was 423.5m +/- 110.4. The diagnosis was mainly established on results from the high-resolution computed tomography in the proper clinical context (55.0% of patients), while 21.2% of patients required invasive procedures (surgical lung biopsy) for definitive diagnosis. Anti-fibrotic treatment was prescribed in 69.4% of cases, 51.5% pirfenidone and 17.9% nintedanib, overall with a good safety profile.Conclusions The SEPAR IPF Registry should help to further characterize current characteristics and future trends of IPF patients in Spain and compare/pool them with other registries and cohorts

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment.

    Get PDF
    More than 90% of cancer-related deaths can be attributed to the occurrence of metastatic diseases. Recent studies have highlighted the importance of the multicellular, biochemical and biophysical stimuli from the tumor microenvironment during carcinogenesis, treatment failure, and metastasis. Therefore, there is a need for experimental platforms that are able to recapitulate the complex pathophysiological features of the metastatic microenvironment. Recent advancements in biomaterials, microfluidics, and tissue engineering have led to the development of living multicellular microculture systems, which are maintained in controllable microenvironments and function with organ level complexity. The applications of these "on-chip" technologies for detection, separation, characterization and three dimensional (3D) propagation of cancer cells have been extensively reviewed in previous works. In this contribution, we focus on integrative microengineered platforms that allow the study of multiple aspects of the metastatic microenvironment, including the physicochemical cues from the tumor associated stroma, the heterocellular interactions that drive trans-endothelial migration and angiogenesis, the environmental stresses that metastatic cancer cells encounter during migration, and the physicochemical gradients that direct cell motility and invasion. We discuss the application of these systems as in vitro assays to elucidate fundamental mechanisms of cancer metastasis, as well as their use as human relevant platforms for drug screening in biomimetic microenvironments. We then conclude with our commentaries on current progress and future perspectives of microengineered systems for fundamental and translational cancer research

    Mind the gap: State-of-the-art technologies and applications for EEG-based brain-computer interfaces

    Get PDF
    Brain–computer interfaces (BCIs) provide bidirectional communication between the brain and output devices that translate user intent into function. Among the different brain imaging techniques used to operate BCIs, electroencephalography (EEG) constitutes the preferred method of choice, owing to its relative low cost, ease of use, high temporal resolution, and noninvasiveness. In recent years, significant progress in wearable technologies and computational intelligence has greatly enhanced the performance and capabilities of EEG-based BCIs (eBCIs) and propelled their migration out of the laboratory and into real-world environments. This rapid translation constitutes a paradigm shift in human–machine interaction that will deeply transform different industries in the near future, including healthcare and wellbeing, entertainment, security, education, and marketing. In this contribution, the state-of-the-art in wearable biosensing is reviewed, focusing on the development of novel electrode interfaces for long term and noninvasive EEG monitoring. Commercially available EEG platforms are surveyed, and a comparative analysis is presented based on the benefits and limitations they provide for eBCI development. Emerging applications in neuroscientific research and future trends related to the widespread implementation of eBCIs for medical and nonmedical uses are discussed. Finally, a commentary on the ethical, social, and legal concerns associated with this increasingly ubiquitous technology is provided, as well as general recommendations to address key issues related to mainstream consumer adoption

    Influence of the Si/Al framework ratio on the microporosity of dealuminated mordenite as determined from N-2 adsorption

    No full text
    Dealuminated mordenites depicting SiO2/Al2O3 molar ratios in the range 10-206 were analyzed through adsorption methods. The Type I-IV hybrid shape of the N-2 adsorption isotherms at 76 K on dealuminated mordenites indicated rather high micropore contents, though some amount of mesopores of slit-like geometry was also present. Micropore volumes and sizes were measured through alpha(S) , t , and DA-plots, as well as by the NLDFT approach. Results indicated that mordenite dealumination caused micropore opening and widening as well as the emergence of further slit-like mesopore

    Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation.

    Get PDF
    Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics
    corecore