119 research outputs found

    Low-dose hydrocortisone reduces norepinephrine duration in severe burn patients: a randomized clinical trial

    Get PDF
    INTRODUCTION: The aim of this study was to assess the effect of low-dose corticosteroid therapy in reducing shock duration after severe burn. METHODS: A placebo-controlled, double-blind, randomized clinical trial (RCT) was performed on two parallel groups in the burn intensive care unit (ICU). Patients were randomized to receive either low-dose corticosteroid therapy or placebo for seven days. A corticotropin test was performed at the time of randomization, before the administration of the treatment dose. Thirty-two severely burned patients with refractory shock (>0.5 μg/kg/min of norepinephrine) were prospectively included in the study. RESULTS: We included 12 patients in the hydrocortisone-treated group and 15 patients in the placebo group in the final analysis. Among these patients, 21 were nonresponders to the corticotropin test. Median norepinephrine treatment duration (primary objective) was significantly lower in the corticosteroid-treated versus the placebo group (57 hours versus 120 hours, P = 0.035). The number of patients without norepinephrine 72 hours after inclusion was significantly lower in the treated group (P = 0.003, log-rank test analysis). The total quantities of norepinephrine administered to patients were lower in the hydrocortisone-treated versus the placebo group (1,205 μg/kg (1,079 to 2,167) versus 1,971 μg/kg (1,535 to 3,893), P = 0.067). There was no difference in terms of ICU or hospital length of stay, sepsis incidence, cicatrization or mortality. CONCLUSIONS: In this placebo-controlled, randomized, double-blind clinical trial, we show for the first time that the administration of low-dose hydrocortisone in burn patients with severe shock reduces vasopressor administration. TRIAL REGISTRATION: Clinicaltrial.gov NCT00149123. Registered 6 September 2005. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-015-0740-0) contains supplementary material, which is available to authorized users

    Population structure and genetic history of Tibetan Terriers

    Get PDF
    International audienceAbstractBackgroundTibetan Terrier is a popular medium-sized companion dog breed. According to the history of the breed, the western population of Tibetan Terriers includes two lineages, Lamleh and Luneville. These two lineages derive from a small number of founder animals from the native Tibetan Terrier population, which were brought to Europe in the 1920s. For almost a century, the western population of Tibetan Terriers and the native population in Tibet were reproductively isolated. In this study, we analysed the structure of the western population of Tibetan Terriers, the original native population from Tibet and of different crosses between these two populations. We also examined the genetic relationships of Tibetan Terriers with other dog breeds, especially terriers and some Asian breeds, and the within-breed structure of both Tibetan Terrier populations.ResultsOur analyses were based on high-density single nucleotide polymorphism (SNP) array (Illumina HD Canine 170 K) and microsatellite (18 loci) genotypes of 64 Tibetan Terriers belonging to different populations and lineages. For the comparative analysis, we used 348 publicly available SNP array genotypes of dogs from other breeds. We found that the western population of Tibetan Terriers and the native Tibetan Terriers clustered together with other Asian dog breeds, whereas all other terrier breeds were grouped into a separate group. We were also able to differentiate the western Tibetan Terrier lineages (Lamleh and Luneville) from the native Tibetan Terrier population.ConclusionsOur results reveal the relationships between the western and native populations of Tibetan Terriers and support the hypothesis that Tibetan Terrier belongs to the group of ancient dog breeds of Asian origin, which are close to the ancestors of the modern dog that were involved in the early domestication process. Thus, we were able to reject the initial hypothesis that Tibetan Terriers belong to the group of terrier breeds. The existence of this native population of Tibetan Terriers at its original location represents an exceptional and valuable genetic resource

    Charcot-Marie-Tooth type 4B2 demyelinating neuropathy in miniature Schnauzer dogs caused by a novel splicing SBF2 (MTMR13) genetic variant: a new spontaneous clinical model

    Get PDF
    This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans

    Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness

    Get PDF
    International audienceDomestic dog breeds display significant diversity in both body mass and skeletal size, resulting from intensive selective pressure during the formation and maintenance of modern breeds. While previous studies focused on the identification of alleles that contribute to small skeletal size, little is known about the underlying genetics controlling large size. We first performed a genome-wide association study (GWAS) using the Illumina Canine HD 170,000 single nucleotide polymorphism (SNP) array which compared 165 large-breed dogs from 19 breeds (defined as having a Standard Breed Weight (SBW) >41 kg [90 lb]) to 690 dogs from 69 small breeds (SBW ≤41 kg). We identified two loci on the canine X chromosome that were strongly associated with large body size at 82–84 megabases (Mb) and 101–104 Mb. Analyses of whole genome sequencing (WGS) data from 163 dogs revealed two indels in the Insulin Receptor Substrate 4 (IRS4) gene at 82.2 Mb and two additional mutations, one SNP and one deletion of a single codon, in Immunoglobulin Superfamily member 1 gene (IGSF1) at 102.3 Mb. IRS4 and IGSF1 are members of the GH/IGF1 and thyroid pathways whose roles include determination of body size. We also found one highly associated SNP in the 5’UTR of Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) at 82.9 Mb, a gene which controls the traits of muscling and back fat thickness. We show by analysis of sequencing data from 26 wolves and 959 dogs representing 102 domestic dog breeds that skeletal size and body mass in large dog breeds are strongly associated with variants within IRS4, ACSL4 and IGSF1

    Universal DNA methylation age across mammalian tissues

    Get PDF
    Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.Publisher PDFPeer reviewe

    Solid-state nuclear magnetic resonance spectroscopy of cements

    Get PDF
    Cement is the ubiquitous material upon which modern civilisation is built, providing long-term strength, impermeability and durability for housing and infrastructure. The fundamental chemical interactions which control the structure and performance of cements have been the subject of intense research for decades, but the complex, crystallographically disordered nature of the key phases which form in hardened cements has raised difficulty in obtaining detailed information about local structure, reaction mechanisms and kinetics. Solid-state nuclear magnetic resonance (SS NMR)spectroscopy can resolve key atomic structural details within these materials and has emerged as a crucial tool in characterising cement structure and properties. This review provides a comprehensive overview of the application of multinuclear SS NMR spectroscopy to understand composition–structure–property relationships in cements. This includes anhydrous and hydrated phases in Portland cement, calcium aluminate cements, calcium sulfoaluminate cements, magnesia-based cements, alkali-activated and geopolymer cements and synthetic model systems. Advanced and multidimensional experiments probe 1 H, 13 C, 17 O, 19 F, 23 Na, 25 Mg, 27 Al, 29 Si, 31 P, 33 S, 35 Cl, 39 K and 43 Ca nuclei, to study atomic structure, phase evolution, nanostructural development, reaction mechanisms and kinetics. Thus, the mechanisms controlling the physical properties of cements can now be resolved and understood at an unprecedented and essential level of detail

    Nanoporosité, texture et propriétés mécaniques de pâtes de ciments

    No full text
    Des silicates de calcium hydratés (C-S-H) forment le liant des matériaux cimentaires et sont responsables de sa cohésion. Mais la structure du C-S-H est encore mal décrite. Nous proposons une description de la porosité basée sur une caractérisation par la relaxation RMN des protons contenus dans les pâtes de C3S. Des courbes de relaxation longitudinale sont extraites des distributions de cinq temps de relaxation (T1). La spectroscopie RMN puis la relaxométrie permettent l'interprétation de ces T1 : le dernier correspond à la portlandite, chacun des quatre premiers correspond à une taille de pore, allant de l'interfeuillet à la plus grande dimension de l'empilement. Dans chacun de ces cas, la relaxation est due à l'association de deux mécanismes impliquant des interactions avec des impuretés paramagnétiques à la surface des C-S-H, ces surfaces comportant des groupements SiOH, CaOH et HOH. La texturation d'une pâte comporte trois étapes. Après une période de latence, l'hydratation s'accélère. La formation des C-S-H implique le développement de la surface associée : ce phénomène est lié à la décroissance progressive de la valeur du T1. Ensuite se dissocient quatre grandes familles de porosité dont trois sont extra-lamellaires. Alors que la réaction d'hydratation est terminée, ces trois familles évoluent vers la formation d'une distribution en loi de puissance. La modification des paramètres de cure influence essentiellement les proportions des deux plus grandes échelles de porosité. La perte de l'organisation en loi d'échelle ou du moins la diminution de son coefficient sont associées à une diminution des modules d'élasticité. C'est le cas lorsque le rapport e/c est supérieur à 0,4 ou quand la température de cure dépasse 50°C. L'ajout de fumée de silice ou l'augmentation de la température de cure, entre 20 et 50°C, accélère la cinétique de texturation. La présence de fumée de silice fait également apparaître une famille de pores supplémentaire aux échelles supérieures.Non disponibl
    • …
    corecore