36 research outputs found

    A invisibilidade do corpo feminino nas montanhas fálicas: Picnic na Montanha Misteriosa (1975)

    Get PDF
    A partir de discussões que são ancoradas em teóricos da recepção e sobre o corpo feminino e sua dimensão na literatura, este artigo discute a narrativa fílmica de Picnic na Montanha Misteriosa (1975), de Peter Weir, adaptação de romance homônimo de Joan Lindsay (1967). O estudo tem como intenção entender a mitificação da figura feminina através dos efeitos produzidos pela obra cinematográfica do diretor em questão, tendo como contraponto a figura da audiência e a apreensão para a concretização do sentido da obra. Para tanto, é importante destacar as reflexões que abarcam as relações de gênero no cinema, pois, assim como em outras linguagens, a representação do feminino, quase sempre, alterna entre presença e ausência, ou seja, ora como um objeto mediante um olhar masculino, ora como uma imagem esmaecida quando protagoniza a criação de sentido. Em contrapartida, a teoria feminista do cinema (Rosen, 1973, Mellen, 1974 & Haskell, 1987) há muito tem proposto uma nova perspectiva ao espaço obscurecido pela construção social dos gêneros. O cinema é uma área importante para que sejam estabelecidas as discussões sobre gênero.Based on discussions that are anchored in reception theorists and the female body and its dimension in literature, this article discusses the filmic narrative of Picnic at the Hanging Rock (1975), by Peter Weir, adapted from the homonymous novel by Joan Lindsay (1967). The study intends to understand the mythification of the female figure through the effects produced by the cinematographic work of the director in question, having as a counterpoint the figure of the audience and its apprehension to formalize the meaning of the work. Therefore, it is important to highlight the reflections that encompass gender relations in cinema, as, as in other languages, the representation of the feminine almost always alternates between presence and absence, that is, sometimes as an object through a male gaze, sometimes as a faded image when she is the protagonist in the creation of meaning. In contrast, feminist film theory (Rosen, 1973; Mellen, 1974; Haskell, 1987) has long proposed a new perspective on the space obscured by the social construction of genders. Cinema is an important area for discussions on gender to be established.info:eu-repo/semantics/publishedVersio

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    The ALICE experiment at the CERN LHC

    Get PDF
    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at sNN=2.76 TeV. The J/ψ is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 μb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6<y<−2.6 is measured to be dσJ/ψcoh/dy=1.00±0.18(stat)−0.26+0.24(syst) mb. The result is compared to theoretical models for coherent J/ψ production and found to be in good agreement with those models which include nuclear gluon shadowing

    Charge correlations using the balance function in Pb?Pb collisions at ?sNN = 2.76 TeV

    No full text
    In high-energy heavy-ion collisions, the correlations between the emitted particles can be used as a probe to gain insight into the charge creation mechanisms. In this article, we report the first results of such studies using the electric charge balance function in the relative pseudorapidity \Delta\eta and azimuthal angle \Delta\phi in Pb-Pb collisions at sqrt{s_{NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The width of the balance function decreases with growing centrality (i.e. for more central collisions) in both projections. This centrality dependence is not reproduced by HIJING, while AMPT, a model which incorporates strings and parton rescattering, exhibits qualitative agreement with the measured correlations in \Delta\phi but fails to describe the correlations in \Delta\eta. A thermal blast wave model incorporating local charge conservation and tuned to describe the p_T spectra and v_2 measurements reported by ALICE, is used to fit the centrality dependence of the width of the balance function and to extract the average separation of balancing charges at freeze-out. The comparison of our results with measurements at lower energies reveals an ordering with sqrt{s_{NN}}: the balance functions become narrower with increasing energy for all centralities. This is consistent with the effect of larger radial flow at the LHC energies but also with the late stage creation scenario of balancing charges. However, the relative decrease of the balance function widths in \Delta\eta and \Delta\phi with centrality from the highest SPS to the LHC energy exhibits only small differences. This observation cannot be interpreted solely within the framework where the majority of the charge is produced at a later stage in the evolution of the heavy-ion collision

    Pseudorapidity density of charged particles p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    No full text
    The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{NN}} = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81 ±\pm 0.71 (syst.), which corresponds to 2.14 ±\pm 0.17 (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at sNN\sqrt{s_{NN}} = 0.2 TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions.The charged-particle pseudorapidity density measured over four units of pseudorapidity in nonsingle-diffractive p+Pb collisions at a center-of-mass energy per nucleon pair sNN=5.02  TeV is presented. The average value at midrapidity is measured to be 16.81±0.71  (syst), which corresponds to 2.14±0.17  (syst) per participating nucleon, calculated with the Glauber model. This is 16% lower than in nonsingle-diffractive pp collisions interpolated to the same collision energy and 84% higher than in d+Au collisions at sNN=0.2  TeV. The measured pseudorapidity density in p+Pb collisions is compared to model predictions and provides new constraints on the description of particle production in high-energy nuclear collisions.The charged-particle pseudorapidity density measured over 4 units of pseudorapidity in non-single-diffractive (NSD) p-Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81±0.7116.81 \pm 0.71 (syst.), which corresponds to 2.14±0.172.14 \pm 0.17 (syst.) per participating nucleon. This is 16% lower than in NSD pp collisions interpolated to the same collision energy, and 84% higher than in d-Au collisions at sNN=0.2\sqrt{s_{\rm NN}} = 0.2 TeV. The measured pseudorapidity density in p-Pb collisions is compared to model predictions, and provides new constraints on the description of particle production in high-energy nuclear collisions
    corecore