324 research outputs found
Remarks on the Configuration Space Approach to Spin-Statistics
The angular momentum operators for a system of two spin-zero
indistinguishable particles are constructed, using Isham's Canonical Group
Quantization method. This mathematically rigorous method provides a hint at the
correct definition of (total) angular momentum operators, for arbitrary spin,
in a system of indistinguishable particles. The connection with other
configuration space approaches to spin-statistics is discussed, as well as the
relevance of the obtained results in view of a possible alternative proof of
the spin-statistics theorem.Comment: 18 page
Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets
Measurements of the double-differential production cross-section
in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad
\leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and
proton--lead collisions are presented. The data were taken with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a
thickness of 5% of a nuclear interaction length. The tracking and
identification of the produced particles was performed using a small-radius
cylindrical time projection chamber (TPC) placed inside a solenoidal magnet.
Incident particles were identified by an elaborate system of beam detectors.
Results are obtained for the double-differential cross-sections at six incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc
and 12.9 \GeVc (Al only)) and compared to previously available data
Measurement of the production of charged pions by protons on a tantalum target
A measurement of the double-differential cross-section for the production of
charged pions in proton--tantalum collisions emitted at large angles from the
incoming beam direction is presented. The data were taken in 2002 with the HARP
detector in the T9 beam line of the CERN PS. The pions were produced by proton
beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target
with a thickness of 5% of a nuclear interaction length. The angular and
momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and
0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design
of a neutrino factory. The produced particles were detected using a
small-radius cylindrical time projection chamber (TPC) placed in a solenoidal
magnet. Track recognition, momentum determination and particle identification
were all performed based on the measurements made with the TPC. An elaborate
system of detectors in the beam line ensured the identification of the incident
particles. Results are shown for the double-differential cross-sections
at four incident
proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the
pion yields within the acceptance of typical neutrino factory designs are shown
as a function of beam momentum. The measurement of these yields within a single
experiment eliminates most systematic errors in the comparison between rates at
different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys.
J.
Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium
The double-differential production cross-section of positive pions,
, measured in the HARP experiment is presented.
The incident particles are 8.9 GeV/c protons directed onto a beryllium target
with a nominal thickness of 5% of a nuclear interaction length. The measured
cross-section has a direct impact on the prediction of neutrino fluxes for the
MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons
on target produced about 96,000 reconstructed secondary tracks which were used
in this analysis. Cross-section results are presented in the kinematic range
0.75 GeV/c < < 6.5 GeV/c and 30 mrad < < 210 mrad in
the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys.
J.
Forward production of charged pions with incident on nuclear targets measured at the CERN PS
Measurements of the double-differential production cross-section
in the range of momentum 0.5 \GeVc \leq p \le 8.0 \GeVc and angle 0.025 \rad
\leq \theta \le 0.25 \rad in interactions of charged pions on beryllium,
carbon, aluminium, copper, tin, tantalum and lead are presented. These data
represent the first experimental campaign to systematically measure forward
pion hadroproduction. The data were taken with the large acceptance HARP
detector in the T9 beam line of the CERN PS. Incident particles, impinging on a
5% nuclear interaction length target, were identified by an elaborate system of
beam detectors. The tracking and identification of the produced particles was
performed using the forward spectrometer of the HARP detector. Results are
obtained for the double-differential cross-sections mainly at four incident pion beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared
with the GEANT4 and MARS Monte Carlo simulationComment: to be published on Nuclear Physics
Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets
A measurement of the double-differential production cross-section
in proton--carbon, proton--copper and proton--tin collisions in the range of
pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta
<2.15 \rad is presented. The data were taken with the HARP detector in the T9
beam line of the CERN PS. The pions were produced by proton beams in a momentum
range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a
nuclear interaction length. The tracking and identification of the produced
particles was done using a small-radius cylindrical time projection chamber
(TPC) placed in a solenoidal magnet. An elaborate system of detectors in the
beam line ensured the identification of the incident particles. Results are
shown for the double-differential cross-sections at four incident proton beam
momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)
PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer
Objectives: To characterize the safety, tolerability, and anti-tumor activity of cemiplimab as monotherapy or in combination with hypofractionated radiation therapy (hfRT) in patients with recurrent or metastatic cervical cancer. To determine the association between histology and programmed death-ligand 1 (PD-L1) expression.
Methods: In non-randomized phase I expansion cohorts, patients (squamous or non-squamous histology) received cemiplimab 3 mg/kg intravenously every 2 weeks for 48 weeks, either alone (monotherapy cohort) or with hfRT during week 2 (combination cohort). Due to insufficient tissue material, PD-L1 protein expression was evaluated in commercially purchased samples and mRNA expression levels were analyzed from The Cancer Genome Atlas (TCGA).
Results: Twenty patients enrolled in both cohorts in total; 10 had squamous histology. The most common adverse events of any grade were diarrhea, fatigue, and hypokalemia, occurring in 35%, 25%, and 25%, respectively. Objective response rate was 10% in each cohort; responders had squamous histology. Duration of response was 11.2 months and 6.4 months for the responder in the monotherapy and combination cohort, respectively. Irradiated lesions were not included in the response assessments. In separate archived specimens (N = 155), PD-L1 protein expression in tumor and immune cells was negative (<1%) more commonly in adenocarcinoma than in squamous tumors. PD-L1 mRNA levels were lower in adenocarcinoma than squamous cell tumors (1.2 vs 5.0 mean transcripts per million, respectively) in TCGA.
Conclusions: Cemiplimab has activity in cervical squamous cell carcinoma. The phase I results, combined with results from other anti-PD-1 trials in cervical cancer and our biomarker analyses have informed the design of the ongoing phase III trial, with the primary overall survival hierarchical analyses being done first in patients with squamous histology
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …