1,422 research outputs found
Clinical Genetics in Britain: Origins and development
Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2010.©The Trustee of the Wellcome Trust, London, 2010.All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Annotated and edited transcript of a Witness Seminar held on 23 September 2008. Introduction by Professor Sir John Bell, Uiversity of Oxford.Clinical genetics has become a major medical specialty in Britain since its beginnings with Lionel Penrose’s work on mental handicap and phenylketonuria (PKU) and John Fraser Robert’s first genetic clinic in 1946. Subsequent advances in diagnosis and prediction have had key impacts on families with inherited disorders and prospective parents concerned about their unborn children. The Witness Seminar focused on the beginnings of British clinical genetics in London, Oxford, Liverpool and Manchester, the development of subspecialties, such as dysmorphology, and also the roles of the Royal College of Physicians, the Clinical Genetics Society and the Department of Health in the establishment of clinical genetics as a specialty in 1980. Specialist non-medical genetic counsellors, initially from the fields of nursing and social work, progressively became a more significant part of genetic services, while lay societies also developed an important influence on services. Prenatal diagnosis became possible with the introduction of new genetic tools in regional centres to identify fetal anomalies and chromosomal disorders. This volume complements the 2001 Witness Seminar on genetic testing which emphasizes laboratory aspects of medical genetics, with limited coverage of clinical genetics. Participants include: Ms Chris Barnes, Dr Caroline Berry, Professor Martin Bobrow (chair), Professor Sir John Burn, Dr Ian Lister Cheese, Professor Angus Clarke, Dr Clare Davison, Professor Joy Delhanty, Dr Nick Dennis, Professor Dian Donnai, Professor Alan Emery, Professor George Fraser, Mrs Margaret Fraser Roberts, Professor Peter Harper, Dr Hilary Harris, Professor Rodney Harris, Professor Shirley Hodgson, Dr Alan Johnston, Mrs Ann Kershaw, Mrs Lauren Kerzin-Storrar, Professor Michael Laurence, Professor Ursula Mittwoch, Professor Michael Modell, Professor Marcus Pembrey, Professor Sue Povey, Professor Heather Skirton, Professor Sir David Weatherall. Harper P A, Reynolds L A, Tansey E M. (eds) (2010) Clinical genetics in Britain: Origins and development. Wellcome Witnesses to Twentieth Century Medicine, vol. 39. London: The Wellcome Trust Centre for the History of Medicine at UCL.The Wellcome Trust Centre for the History of Medicine at UCL is funded by the Wellcome Trust, which is a registered charity, no. 210183
Some pioneers of European human genetics
Some of the pioneers of human genetics across Europe are described, based on a series of 100 recorded interviews made by the author. These interviews, and the memories of earlier workers in the field recalled by interviewees, provide a vivid picture, albeit incomplete, of the early years of human and medical genetics. From small beginnings in the immediate post-World War 2 years, human genetics grew rapidly across many European countries, a powerful factor being the development of human cytogenetics, stimulated by concerns over the risks of radiation exposure. Medical applications soon followed, with the recognition of human chromosome abnormalities, the need for genetic counselling, the possibility of prenatal diagnosis and later, the applications of human molecular genetics. The evolution of the field has been strongly influenced by the characters and interests of the relatively small number of founding workers in different European countries, as well as by wider social, medical and scientific factors in the individual countries
Recommended from our members
Myths about autism: an exploratory study using focus groups
Individuals with autism are often stigmatised and isolated by their typically developing peers according to parental, teacher and self-reports. Whilst quantitative studies often report negative attitudes towards individuals with autism, it is still unclear how understandings of autism influence attitudes. In this exploratory study, misconceptions or myths about autism, i.e. the cognitive component of attitudes, were examined using focus groups.
Purposive sampling was used to recruit undergraduate and postgraduate students, and adults with and without experience of autism, to one of five focus groups (n = 37). Content analysis was used to identify emergent themes. The data identified seven commonly held beliefs about individuals with autism. The first four were related to social interaction, such as that people with autism do not like to be touched. The fifth reflected the view that all individuals with autism have a special talent and the final two concerned beliefs that people with autism are dangerous.
The findings from this study demonstrate that people with varying experience or knowledge of autism often hold inaccurate beliefs about autism. These findings improve our understandings of lay-beliefs about autism, and will aid the development and implementation of interventions designed to improve lay-knowledge of autism
Avoidance as a strategy of (not) coping: qualitative interviews with carers of Huntington's Disease patients
Peer reviewedPublisher PD
Technical Performance Reduces during the Extra-Time Period of Professional Soccer Match-Play
Despite the importance of extra-time in determining progression in specific soccer tournament matches, few studies have profiled the demands of 120-minutes of soccer match-play. With a specific focus on the extra-time period, and using a within-match approach, we examined the influence of prolonged durations of professional soccer match-play on markers of technical (i.e., skilled) performance. In 18 matches involving professional European teams played between 2010 and 2014, this retrospective study quantified the technical actions observed during eight 15-minute epochs (E1: 00:00–14:59 min, E2: 15:00-29:59 min, E3: 30:00-44:59 min, E4: 45:00-59:59 min, E5: 60:00-74:59 min, E6: 75:00-89:59 min, E7: 90:00-104:59 min, E8: 105:00-119:59 min). Analysis of players who completed the demands of the full 120 min of match-play revealed that the cumulative number of successful passes observed during E8 (61±23) was lower than E1-4 (E1: 88±23, P=0.001; E2: 77±21, P=0.005; E3: 79±18, P=0.001; E4: 80±21, P=0.001) and E7 (73±20, P=0.002). Similarly, the total number of passes made in E8 (71±25) was reduced when compared to E1 (102±22, P=0.001), E3 (91±19, P=0.002), E4 (93±22, P≤0.0005) and E7 (84±20, P=0.001). The cumulative number of successful dribbles reduced in E8 (9±4) when compared to E1 (14±4, P=0.001) and E3 (12±4, P≤0.0005) and the total time the ball was in play was less in E8 (504±61 s) compared to E1 (598±70 s, P≤0.0005). These results demonstrate that match-specific factors reduced particular indices of technical performance in the second half of extra-time. Interventions that seek to maintain skilled performance throughout extra-time warrant further investigation
Tylosis with oesophageal cancer: Diagnosis, management and molecular mechanisms
Research on iRHOM2 in the Kelsell group is funded by an MRC project grant,
a MRC Clinical Fellowship (to TM) and a Cancer Research UK program grant
Molecular diagnosis of Huntington disease in Portugal : implications for genetic counselling and clinical practice
Huntington disease (HD) is a eurodegenerative, autosomal dominant disorder of late-onset, caused by
the expansion of a CAG repeat in the coding region of the gene. Ours is the reference laboratory for genetic testing in HD, in Portugal, since 1998; 90.1% of all 158 families known were identified for the first time, including patients with unusual presentation or without family history. A total of 338 genetic tests were performed: 234 for diagnosis, 96 for presymptomatic and four for prenatal testing (four were done for family studies). Most referring physicians were neurologists (90.6%); 82.8% of all clinical diagnosis were confirmed, while 83.1% of those sent for exclusion were in fact excluded. In presymptomatic testing,
an excess of female subjects (59.4%) was again verified; 37.5% of the consultands were found to be carriers. None of the foetuses, in four prenatal tests, were mutation carriers. One juvenile case was
inherited from her mother. Our patient population is very similar to others described so far, namely in terms of mean age at onset and (CAG)n distribution, except perhaps for a higher frequency of large normal (class 2) alleles (3.7%). We also identify cases posing particular problems for genetic counselling, such as, ‘homozygosity’ that can pose a serious ethical dilemma, carriers of large normal alleles, and ‘homoallelism’ for a normal gene, which will demand further procedures and may delay results in presymptomatic and prenatal testing
Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research
Qualitative research investigating soccer practitioners’ perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: ‘importance of extra-time’, ‘rule changes’, ‘efficacy of extra-time hydro-nutritional provision’, ‘nutritional timing’,
‘future research directions’, ‘preparatory modulations’ and ‘recovery’. The majority of practitioners (63%) either agreed or strongly agreed that extra-time is an important period
for determining success in knockout football match-play. When asked if a fourth substitution
should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior
to extra-time was predominately considered important or very important. However; only
41% of practitioners felt that it was the most important time point for the use of nutritional
products. A similar number of practitioners account (50%) and do not (50%) account for the
potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority) were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk, recovery modalities, training paradigms, injury epidemiology, and environmental considerations. This study presents novel insight into the practitioner perceptions of extra-time and provides information to readers about current
applied practices and potential future research opportunities
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
