36 research outputs found
Strong Ultraviolet Pulse From a Newborn Type Ia Supernova
Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs.
Although they are used empirically to measure cosmological distances, the
nature of their progenitors remains mysterious, One of the leading progenitor
models, called the single degenerate channel, hypothesizes that a white dwarf
accretes matter from a companion star and the resulting increase in its central
pressure and temperature ignites thermonuclear explosion. Here we report
observations of strong but declining ultraviolet emission from a Type Ia
supernova within four days of its explosion. This emission is consistent with
theoretical expectations of collision between material ejected by the supernova
and a companion star, and therefore provides evidence that some Type Ia
supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY
We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t)∝(t – t 0) n ) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure (~30, 000 km s–1 derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M ☉ and a large ((5-10) × 1051 erg) kinetic energy, the later being close to the regime of GRB-SN properties
Observational Constraints on the Common Envelope Phase
The common envelope phase was first proposed more than forty years ago to
explain the origins of evolved, close binaries like cataclysmic variables. It
is now believed that the phase plays a critical role in the formation of a wide
variety of other phenomena ranging from type Ia supernovae through to binary
black holes, while common envelope mergers are likely responsible for a range
of enigmatic transients and supernova imposters. Yet, despite its clear
importance, the common envelope phase is still rather poorly understood. Here,
we outline some of the basic principles involved, the remaining questions as
well as some of the recent observational hints from common envelope phenomena -
namely planetary nebulae and luminous red novae - which may lead to answering
these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of
Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and
Skarka; publisher Springer Nature) funded by the European Union Erasmus+
Strategic Partnership grant "Per Aspera Ad Astra Simul"
2017-1-CZ01-KA203-03556
SN 2023zaw: An Ultrastripped, Nickel-poor Supernova from a Low-mass Progenitor
We present SN 2023zaw—a subluminous (M r = −16.7 mag) and rapidly evolving supernova (t 1/2,r = 4.9 days), with the lowest nickel mass (≈0.002 M ⊙) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad He i and Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow He i emission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2 M ☉ and an envelope radius of ≈50 R ⊙. The extremely low nickel mass and low ejecta mass (≈0.5 M ⊙) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10 M ⊙) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005 M ☉) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Initial Characterization of Active Transitioning Centaur, P/2019 LD2 (ATLAS), Using Hubble, Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy
We present visible and mid-infrared imagery and photometry of temporary Jovian co-orbital comet P/2019 LD2 taken with Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3), Spitzer Space Telescope/Infrared Array Camera (Spitzer/IRAC), and the GROWTH telescope network, visible spectroscopy from Keck/Low-Resolution Imaging Spectrometer (LRIS), and archival Zwicky Transient Facility observations taken between 2019 April and 2020 August. Our observations indicate that the nucleus of LD2 has a radius between 0.2 and 1.8 km assuming a 0.08 albedo and a coma dominated by ∼100 μm-scale dust ejected at ∼1 m s−1 speeds with a ∼1′ jet pointing in the southwest direction. LD2 experienced a total dust mass loss of ∼108 kg at a loss rate of ∼6 kg s−1 with Afρ/cross section varying between ∼85 cm/125 km2 and ∼200 cm/310 km2 from 2019 April 9 to 2019 November 8. If the increase in Afρ/cross section remained constant, it implies LD2's activity began ∼2018 November when within 4.8 au of the Sun, implying the onset of H2O sublimation. We measure CO/CO2 gas production of ≲1027 mol s−1/≲1026 mol s−1 from our 4.5 μm Spitzer observations; g–r = 0.59 ± 0.03, r–i = 0.18 ± 0.05, and i–z = 0.01 ± 0.07 from GROWTH observations; and H2O gas production of ≲80 kg s−1 scaling from our estimated C2 production of mol s−1 from Keck/LRIS spectroscopy. We determine that the long-term orbit of LD2 is similar to Jupiter-family comets having close encounters with Jupiter within ∼0.5 Hill radius in the last ∼3 y and within 0.8 Hill radius in ∼9 y. Additionally, 78.8% of our orbital clones are ejected from the solar system within 1 × 106 yr, having a dynamical half-life of 3.4 × 105 yr
Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF
We observed the episodically active asteroid (6478) Gault in 2020 with multiple telescopes in Asia and North America and found that it is no longer active after its recent outbursts at the end of 2018 and the start of 2019. The inactivity during this apparition allowed us to measure the absolute magnitude of Gault of Hr = 14.63 ± 0.02, Gr = 0.21 ± 0.02 from our secular phase-curve observations. In addition, we were able to constrain Gault's rotation period using time-series photometric lightcurves taken over 17 hr on multiple days in 2020 August, September, and October. The photometric lightcurves have a repeating ≲0.05 mag feature suggesting that (6478) Gault has a rotation period of ∼2.5 hr and may have a semispherical or top-like shape, much like the near-Earth asteroids Ryugu and Bennu. The rotation period of ∼2.5 hr is near the expected critical rotation period for an asteroid with the physical properties of (6478) Gault, suggesting that its activity observed over multiple epochs is due to surface mass shedding from its fast rotation spin-up by the Yarkovsky–O'Keefe–Radzievskii–Paddack effect
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams