170 research outputs found

    Digoxin use in contemporary heart failure with reduced ejection fraction: an analysis from the Swedish Heart Failure Registry.

    Get PDF
    AIMS: Digoxin is included in some heart failure (HF) guidelines but controversy persists about the true role for and impact of treatment with this drug, particularly in the absence of atrial fibrillation (AF). The aim of this study was to assess the association between clinical characteristics and digoxin use and between digoxin use and mortality/morbidity in a large, contemporary cohort of patients with HF with reduced ejection fraction (HFrEF) stratified by history of AF. METHODS AND RESULTS: Patients with HFrEF (EF < 40%) enrolled in the Swedish HF registry between 2005 and 2018 were analysed. The independent association between digoxin use and patient characteristics was assessed by logistic regression, and between digoxin use and outcomes [composite of all-cause mortality or HF hospitalization (HFH), all-cause mortality, and HFH] by Cox regressions in a 1:1 propensity score matched population. Digoxin use was analysed at baseline and as a time-dependent variable. Of 42 456 patients with HFrEF, 16% received digoxin, 29% in the AF group and 2.8% in the non-AF group. The main independent predictors of use were advanced HF, higher heart rate, history of AF, preserved renal function, and concomitant use of beta blockers. Digoxin use was associated with lower risk of all-cause death/HFH [hazard ratio (HR): 0.95; 95% confidence interval (CI): 0.91-0.99] in AF, but with higher risk in non-AF (HR: 1.24; 95% CI: 1.09-1.43). Consistent results were observed when digoxin use was analysed as a time-dependent variable. CONCLUSION: The great majority of digoxin users had a history of AF. Digoxin use was associated with lower mortality/morbidity in patients with AF, but with higher mortality/morbidity in patients without AF

    Spiritual Well-Being and Depression in Patients with Heart Failure

    Get PDF
    BACKGROUND: In patients with chronic heart failure, depression is common and associated with poor quality of life, more frequent hospitalizations, and higher mortality. Spiritual well-being is an important, modifiable coping resource in patients with terminal cancer and is associated with less depression, but little is known about the role of spiritual well-being in patients with heart failure. OBJECTIVE: To identify the relationship between spiritual well-being and depression in patients with heart failure. DESIGN: Cross-sectional study. PARTICIPANTS: Sixty patients aged 60 years or older with New York Heart Association class II–IV heart failure. MEASUREMENTS: Spiritual well-being was measured using the total scale and 2 subscales (meaning/peace, faith) of the Functional Assessment of Chronic Illness Therapy—Spiritual Well-being scale, depression using the Geriatric Depression Scale—Short Form (GDS-SF). RESULTS: The median age of participants was 75 years. Nineteen participants (32%) had clinically significant depression (GDS-SF > 4). Greater spiritual well-being was strongly inversely correlated with depression (Spearman’s correlation −0.55, 95% confidence interval −0.70 to −0.35). In particular, greater meaning/peace was strongly associated with less depression (r = −.60, P < .0001), while faith was only modestly associated (r = −.38, P < .01). In a regression analysis accounting for gender, income, and other risk factors for depression (social support, physical symptoms, and health status), greater spiritual well-being continued to be significantly associated with less depression (P = .05). Between the 2 spiritual well-being subscales, only meaning/peace contributed significantly to this effect (P = .02) and accounted for 7% of the variance in depression. CONCLUSIONS: Among outpatients with heart failure, greater spiritual well-being, particularly meaning/peace, was strongly associated with less depression. Enhancement of patients’ sense of spiritual well-being might reduce or prevent depression and thus improve quality of life and other outcomes in this population

    The impact of donor policies in Europe: a steady increase, but not everywhere

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transplantable organs are scarce everywhere. Therefore, countries have developed policies to support the efficient use of potential donors. Nevertheless, the shortage of organs remains. Were these policies in vain? The aim of this study is to assess the impact of donor policies on donor procurement in 10 Western European countries from 1995 to 2005.</p> <p>Method</p> <p>To assess the impact of the donor policies we studied the conversion of potential donors into effectuated donors. 80% of the donors died from CVAs or a (traffic) accident. We considered these mortality rates to be a good proxy for potential donors. Here we call the conversion of potential donors into actual donors 'the donor efficiency rate by proxy'.</p> <p>Results</p> <p>The mortality rates for CVA and (traffic) accidents have decreased in the countries under study. At the same time, in most countries the donor efficiency rates have steadily increased. The variance in donor efficiency rates between countries has also increased from 1995 to 2005. Four countries introduced a new consent system or changed their existing system, without (visible) long-term effects.</p> <p>Conclusion</p> <p>The overall increase in donor efficiency means that the efforts to improve donor policies have paid off. However, substantial differences between countries were found. The success of donor policies in terms of the number of absolute donors is blurred by the success of policies on traffic safety and CVA treatment. It remains unclear which specific policy measures are responsible for the increase in donor efficiency rates. This increase is not related to having a presumed consent system. Furthermore, an analysis of countries that introduced a new consent system or changed their system showed no effect on donor efficiency.</p

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100&nbsp;km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100&nbsp;TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore