173 research outputs found

    Solitons in polarized double layer quantum Hall systems

    Full text link
    A new manifestation of interlayer coherence in strongly polarized double layer quantum Hall systems with total filling factor ν=1\nu=1 in the presence of a small or zero tunneling is theoretically predicted. It is shown that moving (for small tunneling) and spatially localized (for zero tunneling) stable pseudospin solitons develop which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental observation is also discussed.Comment: Phys. Rev. B (accepted

    On the Background Field Method Beyond One Loop: A manifestly covariant derivative expansion in super Yang-Mills theories

    Get PDF
    There are currently many string inspired conjectures about the structure of the low-energy effective action for super Yang-Mills theories which require explicit multi-loop calculations. In this paper, we develop a manifestly covariant derivative expansion of superspace heat kernels and present a scheme to evaluate multi-loop contributions to the effective action in the framework of the background field method. The crucial ingredient of the construction is a detailed analysis of the properties of the parallel displacement propagators associated with Yang-Mills supermultiples in N-extended superspace.Comment: 32 pages, latex, 7 EPS figures. v2: references, comments added, typos corrected, incorrect `skeleton' conjecture in sect. 3 replaced by a more careful treatment. v3: typos corrected, final version published in JHE

    Enhanced Global Symmetry Constraints on epsilon Terms

    Full text link
    Recently it has been proposed that the physical spectrum of a vector-like gauge field theory may exhibit an enhanced global symmetry near a chiral/conformal phase transition. The new symmetry is related to the possibility, supported by various investigations, that a parity-doubled spectrum develops as the number of fermions Nf is increased to a critical value above which it is expected that the symmetric phase is restored. We show that parity-doubling together with the associated enhanced global symmetry severely constrains the epsilon terms of the effective Lagrangian involving Goldstone bosons as well as massive spin-1 particles. We extend our analysis to underlying fermions in pseudo-real representations of the gauge group.Comment: 22 pages, RevTeX format. Appendix A added. Accepted in Nucl. Phys.

    Jet disc coupling in black hole binaries

    Full text link
    In the last decade multi-wavelength observations have demonstrated the importance of jets in the energy output of accreting black hole binaries. The observed correlations between the presence of a jet and the state of the accretion flow provide important information on the coupling between accretion and ejection processes. After a brief review of the properties of black hole binaries, I illustrate the connection between accretion and ejection through two particularly interesting examples. First, an INTEGRAL observation of Cygnus X-1 during a 'mini-' state transition reveals disc jet coupling on time scales of orders of hours. Second, the black hole XTEJ1118+480 shows complex correlations between the X-ray and optical emission. Those correlations are interpreted in terms of coupling between disc and jet on time scales of seconds or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets - from Planets to Quasars. Accepted for publication in Astrophysics & Space Scienc

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Admixture of an s-wave component to the d-wave gap symmetry in high-temperature superconductors

    Full text link
    Neutron crystal-field spectroscopy experiments in the Y- and La-type high-temperature superconductors HoBa2Cu3O6.56, HoBa2Cu4O8, and La1.81Sr0.15Ho0.04CuO4 are reviewed. By this bulk-sensitive technique, information on the gap function is obtained from the relaxation behavior of crystal-field transitions associated with the Ho3+ ions which sit as local probes close to the superconducting copper-oxide planes. The relaxation data exhibit a peculiar change from a convex to a concave shape between the superconducting transition temperature Tc and the pseudogap temperature T* which can only be modelled satisfactorily if the gap function of predominantly d-wave symmetry includes an s-wave component of the order of 20-25%, independent of the doping level. Moreover, our results are compatible with an unusual temperature dependence of the gap function in the pseudogap region (Tc<T<T*), i.e., a breakup of the Fermi surface into disconnected arcs.Comment: 14 pages, 3 figures, 1 table; accepted for publication in J. Supercond. Nov. Mag

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
    corecore